|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Transformer 模型的開發顯著地推進了人工智慧的發展,在不同的任務中提供了卓越的性能。然而,這些進步通常伴隨著嚴格的計算要求,在可擴展性和效率方面提出了挑戰。稀疏激活的專家混合 (MoE) 架構提供了一種有前景的解決方案,無需成比例的計算成本即可增加模型容量。然而,MoE 模型中傳統的 TopK+Softmax 路由面臨顯著的限制。 TopK 路由的離散性和不可微分性質阻礙了可擴展性和最佳化,同時確保平衡的專家利用率仍然是一個長期存在的問題,導致效率低下和效能不佳。
Mixture-of-Experts (MoE) architectures have emerged as a powerful technique to increase the capacity of Transformer models without incurring proportional computational costs. However, traditional TopK+Softmax routing in MoE models presents several limitations, including the discrete and non-differentiable nature of TopK routing, which hampers scalability and optimization, and the difficulty in ensuring balanced expert utilization, leading to inefficiencies and suboptimal performance.
專家混合 (MoE) 架構已成為一種強大的技術,可在不產生相應計算成本的情況下增加 Transformer 模型的容量。然而,MoE模型中傳統的TopK+Softmax路由存在一些局限性,包括TopK路由的離散性和不可微分性,這阻礙了可擴展性和優化,以及難以確保均衡的專家利用率,導致效率低下和性能不佳。
To address these limitations, researchers at Tsinghua University have proposed a new architecture called ReMoE (ReLU-based Mixture-of-Experts). ReMoE replaces the conventional TopK+Softmax routing with a ReLU-based mechanism, enabling a fully differentiable routing process. This design simplifies the architecture and seamlessly integrates with existing MoE systems.
為了解決這些限制,清華大學的研究人員提出了一個名為 ReMoE(基於 ReLU 的專家混合)的新架構。 ReMoE 使用基於 ReLU 的機制取代了傳統的 TopK+Softmax 路由,從而實現了完全可微分的路由過程。該設計簡化了架構,並與現有的 MoE 系統無縫整合。
ReMoE utilizes ReLU activation functions to dynamically determine the active state of experts. In contrast to TopK routing, which activates only the top-k experts based on a discrete probability distribution, ReMoE’s ReLU routing transitions smoothly between active and inactive states. The sparsity of activated experts is controlled using adaptive L1 regularization, ensuring efficient computation while maintaining high performance. This differentiable design also allows for dynamic allocation of resources across tokens and layers, adapting to the complexity of individual inputs.
ReMoE 利用 ReLU 激活函數來動態確定專家的活動狀態。與僅啟動基於離散機率分佈的前 k 個專家的 TopK 路由相比,ReMoE 的 ReLU 路由在活動和非活動狀態之間平滑過渡。使用自適應 L1 正規化控制啟動專家的稀疏性,確保高效運算,同時保持高效能。這種可微分的設計也允許跨代幣和層動態分配資源,適應各個輸入的複雜性。
Technical Details and Benefits
技術細節和優勢
The key innovation of ReMoE lies in its routing mechanism. By replacing the discontinuous TopK operation with a continuous ReLU-based approach, ReMoE eliminates abrupt changes in expert activation, ensuring smoother gradient updates and improved stability during training. Additionally, ReMoE’s dynamic routing mechanism allows for adjusting the number of active experts based on token complexity, promoting efficient resource utilization.
ReMoE的關鍵創新在於其路由機制。透過以基於 ReLU 的連續方法取代不連續的 TopK 操作,ReMoE 消除了專家活化中的突然變化,確保更平滑的梯度更新並提高訓練過程中的穩定性。此外,ReMoE的動態路由機制允許根據代幣複雜度調整活躍專家的數量,從而促進資源的高效利用。
To address imbalances where some experts might remain underutilized, ReMoE incorporates an adaptive load-balancing strategy into its L1 regularization. This refinement ensures a fairer distribution of token assignments across experts, enhancing the model’s capacity and overall performance. The architecture’s scalability is evident in its ability to handle a larger number of experts and finer levels of granularity compared to traditional MoE models.
為了解決一些專家可能仍未充分利用的不平衡問題,ReMoE 將自適應負載平衡策略納入其 L1 正規化中。這種改進確保了專家之間代幣分配的更公平分配,從而增強了模型的容量和整體性能。與傳統的 MoE 模型相比,此架構的可擴展性體現在它能夠處理更多數量的專家和更精細的粒度。
Performance Insights and Experimental Results
性能見解和實驗結果
Extensive experiments demonstrate that ReMoE consistently outperforms conventional MoE architectures. The researchers tested ReMoE using the LLaMA architecture, training models of varying sizes (182M to 978M parameters) with different numbers of experts (4 to 128). Key findings include:
大量實驗表明,ReMoE 的性能始終優於傳統的 MoE 架構。研究人員使用 LLaMA 架構測試了 ReMoE,使用不同數量的專家(4 到 128)訓練不同大小(182M 到 978M 參數)的模型。主要發現包括:
For instance, on downstream tasks like ARC, BoolQ, and LAMBADA, ReMoE showed measurable accuracy improvements over both dense and TopK-routed MoE models. Analyses of training and inference throughput revealed that ReMoE’s differentiable design introduces minimal computational overhead, making it suitable for practical applications.
例如,在 ARC、BoolQ 和 LAMBADA 等下游任務中,ReMoE 比密集和 TopK 路由的 MoE 模型顯示出可測量的精度改進。對訓練和推理吞吐量的分析表明,ReMoE 的可微分設計引入了最小的計算開銷,使其適合實際應用。
Conclusion
結論
ReMoE presents a valuable advance in Mixture-of-Experts architectures by addressing the limitations of TopK+Softmax routing. The ReLU-based routing mechanism, combined with adaptive regularization techniques, ensures that ReMoE is both efficient and adaptable. This innovation highlights the potential of revisiting foundational design choices to achieve better scalability and performance. By offering a practical and resource-conscious approach, ReMoE provides a useful tool for advancing AI systems to meet growing computational demands.
ReMoE 透過解決 TopK+Softmax 路由的局限性,在專家混合架構中呈現出寶貴的進步。基於ReLU的路由機制與自適應正規化技術相結合,確保了ReMoE的高效性和適應性。這項創新凸顯了重新審視基礎設計選擇以實現更好的可擴展性和效能的潛力。透過提供實用且資源意識型的方法,ReMoE 為推進人工智慧系統滿足不斷增長的運算需求提供了一個有用的工具。
Check out the Paper and GitHub Page. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.
請參閱 Paper 和 GitHub 頁面。這項研究的所有功勞都歸功於該計畫的研究人員。另外,不要忘記在 Twitter 上關注我們並加入我們的 Telegram 頻道和 LinkedIn 群組。不要忘記加入我們 60k+ ML SubReddit。
Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence…
趨勢:LG AI Research 發布 EXAONE 3.5:三個開源雙語前沿 AI 級模型,提供無與倫比的指令跟踪和長期上下文理解,以實現卓越生成 AI 的全球領導地位…
免責聲明:info@kdj.com
The information provided is not trading advice. kdj.com does not assume any responsibility for any investments made based on the information provided in this article. Cryptocurrencies are highly volatile and it is highly recommended that you invest with caution after thorough research!
If you believe that the content used on this website infringes your copyright, please contact us immediately (info@kdj.com) and we will delete it promptly.
-
- 現在最值得購買的加密貨幣:5種具有巨大收益潛力的新興貨幣
- 2025-01-01 14:55:02
- 在這份現在最值得購買的加密貨幣清單中,您會發現具有潛力的新興貨幣,可以提供巨大的收益和大幅成長。
-
- 今天市場向我們展示了一些愛,綠色正在蔓延!
- 2025-01-01 14:45:01
- 當我們以「綠色」在市場上開啟新的一年時,很明顯,「市場領導者」正在引領潮流,並與他們一起拉動「山寨幣」。
-
- RCO Finance (RCOF):人工智慧山寨幣徹底改變 DeFi
- 2025-01-01 14:45:01
- XRP 價格走勢一直是市場的焦點,最近在達到令人印象深刻的高點後經歷了回檔。隨著 XRP 價格波動
-
- 2025 年的比特幣:投資者需要了解什麼
- 2025-01-01 14:45:01
- 隨著世界向 2025 年邁進,比特幣仍然是投資者、經濟學家和科技愛好者討論的中心議題。