![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
在当今技术不断前进的世界中,由大语言模型(LLM)提供动力的AI代理的想法正在改变我们如何看待自动化和互动。
In today's world, where technology keeps moving forward, the idea of AI agents powered by Large Language Models (LLMs) is changing how we see automation and interaction. One exciting development is using KYVE Network to make these AI agents smarter, safer, and more reliable.
在当今技术不断前进的世界中,由大语言模型(LLM)提供动力的AI代理的想法正在改变我们如何看待自动化和互动。一个令人兴奋的发展是使用Kyve Network使这些AI代理更聪明,更安全,更可靠。
What is an LLM AI Agent?
什么是LLM AI代理?
Before diving into how data archived through KYVE would enable a significant improvement, it’s crucial to understand LLM AI Agents. They are like smart digital assistants that use big language models to understand and generate human-like text. These agents can help with tasks ranging from answering questions to writing content or managing schedules. However, they need a lot of data to learn from and, more importantly, correct data to base their decisions on facts and not on beliefs, which is where KYVE Network comes in.
在深入研究通过Kyve归档的数据将实现重大改进之前,了解LLM AI代理至关重要。他们就像智能的数字助手一样,使用大语言模型来理解和生成类似人类的文本。这些代理可以帮助完成从回答问题到编写内容或管理时间表的任务。但是,他们需要大量数据来学习,更重要的是,正确的数据以基于事实而不是信念的决定,这是Kyve Network进入的地方。
Are the agents bad?
特工不好吗?
To be clear, AI models aren't inherently good or bad—their performance depends on the data they learn from and how they are programmed to interpret that data. When an AI learns from incorrect data or in an inaccurate way, it gives incorrect results. It's like teaching students the wrong information—they'll make mistakes when applying what they learned.
需要明确的是,AI模型并不是天生的好坏 - 他们的性能取决于他们从中学到的数据以及如何编程来解释该数据。当AI从错误的数据中学习或以不准确的方式学习时,会产生错误的结果。这就像教学生错误的信息一样 - 他们在应用他们学到的东西时会犯错。
Using (blockchain) data is simple because (the data) i(t)s public!
使用(区块链)数据很简单,因为(数据)i(t)公开!
The Role of KYVE Network in the AI Agent landscape. KYVE Network is all about making data storage and access more secure and transparent. Think of it like a library where every book (or piece of data) is checked, verified, and kept safe. Here's how KYVE can help with LLM AI Agents:
Kyve网络在AI代理景观中的作用。 Kyve Network就是要使数据存储和访问更加安全和透明。将其视为图书馆,在该图书馆中,检查,验证并保持安全的每本书(或一本数据)。 Kyve可以如何帮助LLM AI代理:
Introducing DataWave, a step toward data correctness.
引入DataWave,这是迈向数据正确性的一步。
Indeed, trust in AI agents has already made progress. But imagine a scenario where there’s no need to double-check the agent’s answers because they are backed by trustless data from multiple verified sources that you could access as a public good. This is the vision KYVE Network brings to the table—elevating AI agents to a level where their applications are grounded in reality, not just speculative promises of a brighter future.
确实,对AI代理商的信任已经取得了进步。但是,想象一下一个场景,无需仔细检查代理的答案,因为它们得到了来自多个经过验证的来源的无信任数据,您可以作为公共物品访问。这是Kyve Network带来的愿景,将AI代理提升到了其应用程序以实现现实为基础的水平,而不仅仅是更美好的未来的投机承诺。
Since its inception, KYVE’s core value has been providing verified and verifiable data while removing the burden of verification from the end user. This enables seamless decision-making in a fully trustless environment, empowering faster, data-driven outcomes.
自成立以来,Kyve的核心价值一直提供经过验证和可验证的数据,同时消除了最终用户的验证负担。这可以在完全无信任的环境中无缝决策,从而更快,数据驱动的结果。
More than a tool, DataWave Beta establishes the foundation for scalable and reliable data-driven ecosystems. It calls on users, developers, and innovators to explore KYVE’s infrastructure and unlock the possibilities of a world where real, trustless data powers every decision, chart, and analysis.
Datawave Beta不仅仅是工具,还为可扩展和可靠的数据驱动的生态系统建立了基础。它呼吁用户,开发人员和创新者探索Kyve的基础架构,并解锁一个世界的可能性,即真实,无信任的数据为每个决策,图表和分析提供权力。
Conclusion
结论
Integrating KYVE Network into the development of LLM AI Agents is a step towards a future where technology is advanced but also trustworthy and secure. This approach meets current needs and sets a new standard for how we expect AI to function.
将Kyve Network集成到LLM AI代理的开发中是迈向技术先进但也值得信赖和安全的未来的一步。这种方法满足了当前的需求,并为我们期望AI运作的新标准设定了新标准。
By leveraging KYVE, we're not just enhancing AI; we're redefining what's possible with technology, ensuring that we do so with integrity and foresight as we move forward.
通过利用Kyve,我们不只是增强AI;我们正在重新定义技术的可能性,以确保我们继续前进时以正直和远见的方式这样做。
免责声明:info@kdj.com
所提供的信息并非交易建议。根据本文提供的信息进行的任何投资,kdj.com不承担任何责任。加密货币具有高波动性,强烈建议您深入研究后,谨慎投资!
如您认为本网站上使用的内容侵犯了您的版权,请立即联系我们(info@kdj.com),我们将及时删除。
-
- 斯洛文尼亚计划通过征税25%,从加密货币利润中获得更大的味道
- 2025-04-18 15:30:13
- 在2023年对加密货币提款征收10%的税后,该国的财政部现已提出新法律,以增加对加密货币贸易收益的25%税。
-
-
-
- 当JLP看到主要出口时,Fartcoin主导流入
- 2025-04-18 15:25:13
- Memecoin市场显示出明显的净流入趋势,这揭示了投资者对我们称为Memecoins的几个令牌的信心或兴趣。
-
- 巴拿马城接受比特币,以太坊,美元硬币以及税收和其他服务
- 2025-04-18 15:20:13
- 付款将包括比特币[BTC],以太坊[ETH],USD Coin [USDC]和Tether [USDT]。
-
- Dogecoin(Doge)最新价格编队表明可能正在进行早期恢复
- 2025-04-18 15:20:13
- Dogecoin的最新价格形态表明,在短期和中期时间内的信号中,可能正在进行早期恢复。
-
-
- 比特币和Ether(ETH)市场从2025年开始下降,这使投资者感到惊讶
- 2025-04-18 15:15:14
- 在所有期望下,加密市场始于2025年下降,这使投资者感到惊讶。比特币和以太,通常表现强劲
-
- Pyth网络(Pyth)在启动熵时爆发,这是一个安全的链上随机数生成工具
- 2025-04-18 15:15:12
- 在以波动性和转移投资者情绪为标志的一周内,金融格局在传统和数字资产方面都有重大发展。