市值: $3.1702T -0.500%
成交额(24h): $68.4451B -46.830%
  • 市值: $3.1702T -0.500%
  • 成交额(24h): $68.4451B -46.830%
  • 恐惧与贪婪指数:
  • 市值: $3.1702T -0.500%
加密货币
话题
百科
资讯
加密话题
视频
热门新闻
加密货币
话题
百科
资讯
加密话题
视频
bitcoin
bitcoin

$96333.736218 USD

-0.12%

ethereum
ethereum

$2794.212975 USD

3.83%

xrp
xrp

$2.567236 USD

-0.92%

tether
tether

$1.000070 USD

0.02%

bnb
bnb

$665.513425 USD

1.27%

solana
solana

$171.604422 USD

-0.12%

usd-coin
usd-coin

$0.999978 USD

0.00%

dogecoin
dogecoin

$0.244805 USD

0.18%

cardano
cardano

$0.774995 USD

0.71%

tron
tron

$0.242596 USD

2.02%

chainlink
chainlink

$17.899842 USD

2.05%

avalanche
avalanche

$25.609807 USD

2.64%

sui
sui

$3.385756 USD

1.02%

stellar
stellar

$0.332895 USD

1.57%

litecoin
litecoin

$127.073849 USD

-2.04%

加密货币新闻

重新思考无常损失:探索分散交流(DEX)不断发展的景观

2025/02/23 16:52

在这次采访中,我们探讨了分散交流(DEX)不断发展的景观,尤其是专注于市场领导者Uniswap。我们讨论了使用数学功能在交易所确定价格的重要性,这与传统的订单系统不同。对话强调了恒定产品做市商(CPMM)模型的优势,并强调了智能合约在分散融资(DEFI)生态系统中其扩散中的作用。值得注意的是,我们介绍了无常收益的概念,该概念在某些条件下为流动性提供者提供了有关无常损失的新观点。此外,我们解决了用户教育的关键作用以及研究发现对诸如UnisWap之类的既定Defi平台的实际含义。我们还涵盖了DEX面临的监管挑战,以及实施措施以增强用户和平台之间的信任的重要性。最终,这次访谈为自动化做市商(AMM)的未来以及Uniswap等企业的前景提供了现实的见解,以通过创新来增强盈利能力,并与正在进行的数字金融复杂性所需的持续研究。

重新思考无常损失:探索分散交流(DEX)不断发展的景观

This interview delves into the evolving landscape of decentralized exchanges (DEXs), with a particular focus on the market leader, Uniswap. We discuss the significance of using mathematical functions for price determination in exchanges, which diverges from traditional order book systems. The conversation highlights the advantages of the Constant Product Market Maker (CPMM) model and emphasizes the role of smart contracts in its proliferation within the decentralized finance (DeFi) ecosystem. Notably, we introduce the concept of impermanent gain, which provides new perspectives on impermanent loss under certain conditions for liquidity providers. Additionally, we address the crucial role of user education and the practical implications of research findings on established DeFi platforms like Uniswap. We also cover the regulatory challenges facing DEX and the importance of implementing measures to enhance trust between users and platforms. Ultimately, this interview offers realistic insights into the future of Automated Market Makers (AMMs) and the prospects for businesses like Uniswap to enhance profitability through innovation alongside the ongoing research needed to navigate the complexities of digital finance.

这次采访深入研究了分散交流(DEX)不断发展的景观,特别关注市场领导者Uniswap。我们讨论了使用数学功能在交易所确定价格的重要性,这与传统的订单系统不同。对话强调了恒定产品做市商(CPMM)模型的优势,并强调了智能合约在分散融资(DEFI)生态系统中其扩散中的作用。值得注意的是,我们介绍了无常收益的概念,该概念在某些条件下为流动性提供者提供了有关无常损失的新观点。此外,我们解决了用户教育的关键作用以及研究发现对诸如UnisWap之类的既定Defi平台的实际含义。我们还涵盖了DEX面临的监管挑战,以及实施措施以增强用户和平台之间的信任的重要性。最终,这次访谈为自动化做市商(AMM)的未来以及Uniswap等企业的前景提供了现实的见解,以通过创新来增强盈利能力,并与正在进行的数字金融复杂性所需的持续研究。

The following is a Q&A session with Professor Hyoung Joong Kim from the Business Group for the Next Generation of Communication at Kookmin University.

以下是与Kookmin University的下一代传播公司的Hyoung Joong Kim教授的问答环节。

Q: Price Determination: Can you explain the importance of using mathematical functions for price determination and how this differs from traditional order book systems in decentralized exchanges?

问:价格确定:您能否解释使用数学功能进行价格确定的重要性,以及这与分散交易所中传统的订单簿系统有何不同?

A: Throughout history, there seems to have never been an instance where prices were determined by mathematical formula. The process of discovering prices has been bypassed, yet it feels surprisingly natural to accept a determined price, similar to buying items at a fixed price. The mathematical price determination was first attempted by Uniswap in 2018, and it has since taken root in the market, making the company a unicorn. This method has been adopted by several decentralized exchanges such as Sushiswap and PancakeSwap. Recently, mathematical pricing has also been applied in prediction markets.

答:在整个历史上,似乎从未有过通过数学公式确定价格的情况。发现价格的过程已经绕过,但是接受确定的价格很自然,类似于以固定价格购买商品。数学价格确定是在2018年首次由Uniswap尝试的,此后已在市场上扎根,使该公司成为独角兽。该方法已被诸如Sushiswap和Pancakeswap等几个分散的交易所采用。最近,数学定价也已应用于预测市场。

Q: Constant Product Market Maker: What are the key advantages of using the Constant Product Market Maker (CPMM) in decentralized exchanges, and why do you think it has been widely adopted?

问:恒定的产品做市商:在分散交易所中使用恒定产品推销商(CPMM)的关键优势是什么?您为什么认为它已被广泛采用?

A: It is crucial to understand the meaning of constant product. The constant product refers to keeping the product of the quantity of coin A and the quantity of coin B constant. As the quantity of coin A increases, the quantity of coin B must decrease so that the product is a constant, and vice versa. If the quantity of coin A decreases while that of coin B increases, it indicates that the value of coin A has been relatively higher compared to coin B. In other words, a smaller quantity corresponds to a higher price and a larger quantity to a lower price, a universal truth utilized in price determination. People perceive this method as fair, and it functions through smart contracts, which is significant, suggesting that this approach has the potential for wide use in the future.

答:了解恒定产品的含义至关重要。恒定产物是指保留硬币A量的产物和硬币B常数的量。随着硬币A的数量增加,硬币B的数量必须减少,以使产物是常数,反之亦然。如果硬币A的数量减少而硬币B的数量增加,则表明与硬币B相比,硬币A的价值相对较高价格,在价格确定中使用的普遍真理。人们认为这种方法是公平的,并且它通过智能合约发挥作用,这很重要,这表明这种方法有可能在将来广泛使用。

Q: Causes of Impermanent Loss: What causes impermanent loss?

问:无常损失的原因:是什么造成无常损失?

A: It is widely acknowledged that liquidity providers suffer a loss on exchanges utilizing CPMM. This loss is referred to as impermanent loss and has been accepted as a norm because it has mathematically been proven that loss always occurs. The prices used in this context are represented by the ratio of the quantity of coin A to that of coin B, which is the fundamental cause surrounding impermanent loss.

答:人们普遍承认,使用CPMM的交流损失损失。这种损失被称为无常损失,并被认为是一种规范,因为它在数学上已被证明总是会发生损失。在这种情况下使用的价格由硬币A与硬币B的数量的比率表示,这是无常损失的基本原因。

Q: Types of Mathematical Pricing: Are there multiple types of mathematical pricing?

问:数学定价的类型:是否有多种类型的数学定价?

A: In the effort to eliminate impermanent loss, I found that at least two types of mathematical pricing exist. The price of coin A is represented by the ratio of the quantity of coin A to that of coin B, which is referred to as the relative price. However, using this pricing does not allow for the removal of impermanent loss, and this relative price is, in fact, not the exact price of coin A. The exact price of coin A is expressed as the absolute value of the ratio of the increment in the quantity of coin A to that of coin B. I refer to this as the exact price, which indeed represents the true price. The relative price is the price before a transaction takes place, the exact price is the price at the moment the actual transaction takes place, and the difference between the two prices is called slippage.

答:为了消除无常损失,我发现至少存在两种​​数学定价。硬币A的价格由硬币A与硬币B的数量的比例表示,该代币A的价格称为相对价格。但是,使用此定价不允许消除无常损失,实际上,这种相对价格不是硬币A的确切价格A。硬币A的确切价格表示为增量比率的绝对值在硬币A的硬币A的数量中,我将其称为确切价格,这确实代表了真实的价格。相对价格是交易发生之前的价格,确切的价格是实际交易时的价格,两个价格之间的差额称为滑板。

Q: Impermanent Loss and Gain: The paper suggests that impermanent gain can be achieved under certain conditions. What are these conditions, and how do they benefit liquidity providers?

问:无常损失和收益:本文表明,在某些条件下可以实现无常增益。这些条件是什么,它们如何使流动性提供者受益?

A: Completely eliminating impermanent loss is impossible. However, contrary to prior knowledge, I discovered that gain can occasionally occur. For gain to be realized, two conditions must be satisfied. First, the use of the exact price, not the relative price. For example, in the past, when liquidity providers first participated in the liquidity pool, they deposited 10 coins, and after many transactions, there are now 11 coins, and at some point in the future, when a trader wants to buy two coins, the quantity of coins will decrease to 9. In other words, the second condition is that it goes from 11 to

答:完全消除无常损失是不可能的。但是,与先验知识相反,我发现有时会发生收益。为了实现收益,必须满足两个条件。首先,使用确切价格,而不是相对价格。例如,过去,当流动性提供商首次参加流动性池时,他们存入了10个硬币,经过多次交易,现在有11个硬币,并且在将来的某个时候,交易者想购买两个硬币,硬币的数量将减少到9。换句话说,第二个条件是从11到11

免责声明:info@kdj.com

所提供的信息并非交易建议。根据本文提供的信息进行的任何投资,kdj.com不承担任何责任。加密货币具有高波动性,强烈建议您深入研究后,谨慎投资!

如您认为本网站上使用的内容侵犯了您的版权,请立即联系我们(info@kdj.com),我们将及时删除。

2025年02月23日 发表的其他文章