![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
加密货币新闻
METAGENE-1: A Metagenomic Foundation Model for Biosurveillance and Pandemic Preparedness
2025/01/07 10:51
With emerging pandemics posing persistent threats to global health, the need for advanced biosurveillance and pathogen detection systems is becoming increasingly evident. Traditional genomic analysis methods, while effective in isolated cases, often encounter challenges in addressing the complexities of large-scale health monitoring. A significant difficulty lies in identifying and understanding the genomic diversity in environments such as wastewater, which contains a rich mix of microbial and viral DNA and RNA. In this context, the rapid advancements in biological research are highlighting the importance of scalable, accurate, and interpretable models to analyze vast amounts of metagenomic data, aiding in the prediction and mitigation of health crises.
Now, a team of researchers from the University of Southern California, Prime Intellect, and the Nucleic Acid Observatory have introduced METAGENE-1, a metagenomic foundation model. This 7-billion-parameter autoregressive transformer model is specifically designed to analyze metagenomic sequences. METAGENE-1 is trained on a dataset comprising over 1.5 trillion DNA and RNA base pairs derived from human wastewater samples, utilizing next-generation sequencing technologies and a tailored byte-pair encoding (BPE) tokenization strategy to capture the intricate genomic diversity present in these datasets. The model is open-sourced, encouraging collaboration and further advancements in the field.
Technical Highlights and BenefitsMETAGENE-1’s architecture draws on modern transformer models, including GPT and Llama families. This decoder-only transformer uses a causal language modeling objective to predict the next token in a sequence based on preceding tokens. Its key features include:
A decoder-only transformer architecture with 7 billion parameters.
Trained on a vast dataset of over 1.5 trillion DNA and RNA base pairs from human wastewater samples.
Employs a BPE tokenization strategy tailored to metagenomic sequences.
These features enable METAGENE-1 to generate high-quality sequence embeddings and adapt to specific tasks, enhancing its utility in the genomic and public health domains.
Results and InsightsThe capabilities of METAGENE-1 were assessed using multiple benchmarks, where it demonstrated notable performance. In a pathogen detection benchmark based on human wastewater samples, the model achieved an average Matthews correlation coefficient (MCC) of 92.96, significantly outperforming other models. Additionally, METAGENE-1 showed strong results in anomaly detection tasks, effectively distinguishing metagenomic sequences from other genomic data sources.
In embedding-based genomic analyses, METAGENE-1 excelled on the Gene-MTEB benchmark, achieving a global average score of 0.59. This performance underscores its adaptability in both zero-shot and fine-tuning scenarios, reinforcing its value in handling complex and diverse metagenomic data.
ConclusionMETAGENE-1 represents a thoughtful integration of artificial intelligence and metagenomics. By leveraging transformer architectures, the model offers practical solutions for biosurveillance and pandemic preparedness. Its open-source release invites researchers to collaborate and innovate, advancing the field of genomic science. As challenges related to emerging pathogens and global pandemics continue, METAGENE-1 demonstrates how technology can play a crucial role in addressing public health concerns effectively and responsibly.
Check out the Paper, Website, GitHub Page, and Model on Hugging Face. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.
FREE UPCOMING AI WEBINAR (JAN 15, 2025): Boost LLM Accuracy with Synthetic Data and Evaluation Intelligence
免责声明:info@kdj.com
所提供的信息并非交易建议。根据本文提供的信息进行的任何投资,kdj.com不承担任何责任。加密货币具有高波动性,强烈建议您深入研究后,谨慎投资!
如您认为本网站上使用的内容侵犯了您的版权,请立即联系我们(info@kdj.com),我们将及时删除。
-
-
-
- Wintermute在降低了557万美元的钱包价值后调整投资组合
- 2025-03-31 19:05:12
- Wintermute是加密货币市场中受欢迎的营销平台,已经下降了大幅下降。
-
-
- PI网络(PI)硬币的价格下跌了70%以上
- 2025-03-31 19:00:13
- 由于恐惧和贪婪指数跌至25。
-
- 一条罕见的50p硬币将其售价300倍以其面值销售后,使收藏家陷入了疯狂。
- 2025-03-31 19:00:13
- 据信,皇家造币厂已经制作了21万个特殊硬币,因此您有可能在钱包里放一个。
-
- SUI(SUI)令牌解锁定于2025年4月1日
- 2025-03-31 18:55:12
- SUI(SUI)的主要代币解锁定于4月1日举行,6419万个令牌价值约1.51亿美元
-
-
- SUI令牌解锁事件可能会影响其价格变动
- 2025-03-31 18:50:12
- SUI区块链正在为一项重大的令牌解锁活动做准备,该活动可能会影响未来几天的价格变动。