![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
Articles d’actualité sur les crypto-monnaies
METAGENE-1: A Metagenomic Foundation Model for Biosurveillance and Pandemic Preparedness
Jan 07, 2025 at 10:51 am
With emerging pandemics posing persistent threats to global health, the need for advanced biosurveillance and pathogen detection systems is becoming increasingly evident. Traditional genomic analysis methods, while effective in isolated cases, often encounter challenges in addressing the complexities of large-scale health monitoring. A significant difficulty lies in identifying and understanding the genomic diversity in environments such as wastewater, which contains a rich mix of microbial and viral DNA and RNA. In this context, the rapid advancements in biological research are highlighting the importance of scalable, accurate, and interpretable models to analyze vast amounts of metagenomic data, aiding in the prediction and mitigation of health crises.
Now, a team of researchers from the University of Southern California, Prime Intellect, and the Nucleic Acid Observatory have introduced METAGENE-1, a metagenomic foundation model. This 7-billion-parameter autoregressive transformer model is specifically designed to analyze metagenomic sequences. METAGENE-1 is trained on a dataset comprising over 1.5 trillion DNA and RNA base pairs derived from human wastewater samples, utilizing next-generation sequencing technologies and a tailored byte-pair encoding (BPE) tokenization strategy to capture the intricate genomic diversity present in these datasets. The model is open-sourced, encouraging collaboration and further advancements in the field.
Technical Highlights and BenefitsMETAGENE-1’s architecture draws on modern transformer models, including GPT and Llama families. This decoder-only transformer uses a causal language modeling objective to predict the next token in a sequence based on preceding tokens. Its key features include:
A decoder-only transformer architecture with 7 billion parameters.
Trained on a vast dataset of over 1.5 trillion DNA and RNA base pairs from human wastewater samples.
Employs a BPE tokenization strategy tailored to metagenomic sequences.
These features enable METAGENE-1 to generate high-quality sequence embeddings and adapt to specific tasks, enhancing its utility in the genomic and public health domains.
Results and InsightsThe capabilities of METAGENE-1 were assessed using multiple benchmarks, where it demonstrated notable performance. In a pathogen detection benchmark based on human wastewater samples, the model achieved an average Matthews correlation coefficient (MCC) of 92.96, significantly outperforming other models. Additionally, METAGENE-1 showed strong results in anomaly detection tasks, effectively distinguishing metagenomic sequences from other genomic data sources.
In embedding-based genomic analyses, METAGENE-1 excelled on the Gene-MTEB benchmark, achieving a global average score of 0.59. This performance underscores its adaptability in both zero-shot and fine-tuning scenarios, reinforcing its value in handling complex and diverse metagenomic data.
ConclusionMETAGENE-1 represents a thoughtful integration of artificial intelligence and metagenomics. By leveraging transformer architectures, the model offers practical solutions for biosurveillance and pandemic preparedness. Its open-source release invites researchers to collaborate and innovate, advancing the field of genomic science. As challenges related to emerging pathogens and global pandemics continue, METAGENE-1 demonstrates how technology can play a crucial role in addressing public health concerns effectively and responsibly.
Check out the Paper, Website, GitHub Page, and Model on Hugging Face. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.
FREE UPCOMING AI WEBINAR (JAN 15, 2025): Boost LLM Accuracy with Synthetic Data and Evaluation Intelligence
Clause de non-responsabilité:info@kdj.com
Les informations fournies ne constituent pas des conseils commerciaux. kdj.com n’assume aucune responsabilité pour les investissements effectués sur la base des informations fournies dans cet article. Les crypto-monnaies sont très volatiles et il est fortement recommandé d’investir avec prudence après une recherche approfondie!
Si vous pensez que le contenu utilisé sur ce site Web porte atteinte à vos droits d’auteur, veuillez nous contacter immédiatement (info@kdj.com) et nous le supprimerons dans les plus brefs délais.
-
- Pourquoi Team India est arrivé au Dubaï Stadium à peine 35 minutes avant le TOCK TOSH pour le champion Trophée 2025 Clash contre le Pakistan?
- Feb 24, 2025 at 12:25 am
- Champions Trophy 2025: L'équipe indienne n'a pas eu beaucoup de temps pour se réchauffer avant l'affrontement contre le Pakistan car leur bus était coincé dans la circulation de Dubaï.
-
-
- La révolution de l'art numérique de Dogecoin: comment elle façonne l'avenir de NFTS
- Feb 24, 2025 at 12:25 am
- Révolutionner les coûts de transaction: Dogecoin brise les obstacles dans le monde de la NFT en réduisant les frais de transaction, ce qui permet aux artistes de vendre plus facilement leurs créations numériques sans les coûts lourds généralement associés aux plates-formes NFT. Cette libération financière est particulièrement stimulante pour les artistes émergents, leur permettant de présenter leur travail à l'échelle mondiale sans contraintes économiques.
-
-
-
- Kaito Bbtrend est négatif, ADX montre un manque de direction tendance: le prix de Kaito atteint-il les niveaux supérieurs à 2 $ bientôt?
- Feb 24, 2025 at 12:25 am
- La récente tablette aérienne de Kaito a surpris beaucoup, suscitant l'excitation initiale. Cependant, le jeton a désormais du mal à maintenir l'intérêt des utilisateurs - un problème courant vu avec les autres parachutistes.
-
-
-