Capitalisation boursière: $2.8161T -4.520%
Volume(24h): $124.1295B 7.040%
  • Capitalisation boursière: $2.8161T -4.520%
  • Volume(24h): $124.1295B 7.040%
  • Indice de peur et de cupidité:
  • Capitalisation boursière: $2.8161T -4.520%
Cryptos
Les sujets
Cryptospedia
Nouvelles
CryptosTopics
Vidéos
Top News
Cryptos
Les sujets
Cryptospedia
Nouvelles
CryptosTopics
Vidéos
bitcoin
bitcoin

$91950.782490 USD

5.02%

ethereum
ethereum

$2294.491836 USD

4.33%

xrp
xrp

$2.509390 USD

2.51%

tether
tether

$1.000095 USD

0.02%

bnb
bnb

$607.189640 USD

2.41%

solana
solana

$149.261380 USD

4.01%

usd-coin
usd-coin

$0.999917 USD

-0.03%

cardano
cardano

$0.944236 USD

0.60%

dogecoin
dogecoin

$0.214017 USD

7.05%

tron
tron

$0.245479 USD

1.44%

pi
pi

$1.907150 USD

0.33%

chainlink
chainlink

$17.337094 USD

13.85%

hedera
hedera

$0.248356 USD

-2.66%

stellar
stellar

$0.300477 USD

1.02%

unus-sed-leo
unus-sed-leo

$9.918046 USD

0.25%

Articles d’actualité sur les crypto-monnaies

Sa2VA: A Unified Model for Dense Grounded Understanding of Images and Videos

Jan 13, 2025 at 03:31 am

Sa2VA: A Unified Model for Dense Grounded Understanding of Images and Videos

Multi-Modal Large Language Models (MLLMs) have seen rapid advancements in handling various image and video-related tasks, including visual question answering, narrative generation, and interactive editing. However, achieving fine-grained video content understanding, such as pixel-level segmentation, tracking with language descriptions, and performing visual question answering on specific video prompts, still poses a critical challenge in this field. State-of-the-art video perception models excel at tasks like segmentation and tracking but lack open-ended language understanding and conversation capabilities. At the same time, video MLLMs demonstrate strong performance in video comprehension and question answering but fall short in handling perception tasks and visual prompts.

Existing attempts to address video understanding challenges have followed two main approaches: MLLMs and Referring Segmentation systems. Initially, MLLMs focused on developing improved multi-modal fusion methods and feature extractors, eventually evolving towards instruction tuning on LLMs with frameworks like LLaVA. Recent developments have attempted to unify image, video, and multi-image analysis in single frameworks, such as LLaVA-OneVision. In parallel, Referring Segmentation systems have progressed from basic fusion modules to transformer-based methods that integrate segmentation and tracking within videos. However, these solutions lack a comprehensive integration of perception and language understanding capabilities.

To overcome this limitation, researchers from UC Merced, Bytedance Seed, Wuhan University, and Peking University have proposed Sa2VA, a groundbreaking unified model for a dense grounded understanding of images and videos. The model differentiates itself by supporting a comprehensive range of image and video tasks through minimal one-shot instruction tuning, addressing the limitations of existing multi-modal large language models. Sa2VA’s innovative approach integrates SAM-2 with LLaVA, unifying text, image, and video in a shared LLM token space. The researchers have also introduced Ref-SAV, an extensive auto-labeled dataset containing over 72K object expressions in complex video scenes, with 2K manually validated video objects to ensure robust benchmarking capabilities.

Sa2VA’s architecture integrates two main components: a LLaVA-like model and SAM-2, connected through a novel decoupled design. The LLaVA-like component consists of a visual encoder processing images and videos, a visual projection layer, and an LLM for text token prediction. The system employs a unique decoupled approach where SAM-2 operates alongside the pre-trained LLaVA model without direct token exchange, maintaining computational efficiency and enabling plug-and-play functionality with various pre-trained MLLMs. The key innovation lies in the connection mechanism using a special “[SEG]” token, allowing SAM-2 to generate segmentation masks while enabling gradient backpropagation through the “[SEG]” token to optimize the MLLM’s prompt generation capabilities.

The Sa2VA model achieves state-of-the-art results on referring segmentation tasks, with Sa2VA-8B scoring 81.6, 76.2, and 78.9 cIoU on RefCOCO, RefCOCO+, and RefCOCOg respectively, outperforming previous systems like GLaMM-7B. In conversational capabilities, Sa2VA shows strong performance with scores of 2128 on MME, 81.6 on MMbench, and 75.1 on SEED-Bench. The model excels in video benchmarks, surpassing previous state-of-the-art VISA-13B by substantial margins on MeVIS, RefDAVIS17, and ReVOS. Moreover, Sa2VA’s performance is noteworthy considering its smaller model size compared to competitors, showing its efficiency and effectiveness across both image and video understanding tasks.

In this paper, researchers introduced Sa2VA which represents a significant advancement in multi-modal understanding by successfully integrating SAM-2’s video segmentation capabilities with LLaVA’s language processing abilities. The framework's versatility is shown through its ability to handle diverse image and video understanding tasks with minimal one-shot instruction tuning, addressing the long-standing challenge of combining perception and language understanding. Sa2VA’s strong performance across multiple benchmarks, from referring segmentation to conversational tasks, validates its effectiveness as a unified solution for a dense, grounded understanding of visual content, marking a significant step forward in the multi-modal AI systems field.

Check out the Paper and Model on Hugging Face. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 65k+ ML SubReddit.

FREE UPCOMING AI WEBINAR (JAN 15, 2025): Boost LLM Accuracy with Synthetic Data and Evaluation Intelligence

Join this webinar to gain actionable insights into boosting LLM model performance and accuracy while safeguarding data privacy.output

Clause de non-responsabilité:info@kdj.com

Les informations fournies ne constituent pas des conseils commerciaux. kdj.com n’assume aucune responsabilité pour les investissements effectués sur la base des informations fournies dans cet article. Les crypto-monnaies sont très volatiles et il est fortement recommandé d’investir avec prudence après une recherche approfondie!

Si vous pensez que le contenu utilisé sur ce site Web porte atteinte à vos droits d’auteur, veuillez nous contacter immédiatement (info@kdj.com) et nous le supprimerons dans les plus brefs délais.

Autres articles publiés sur Mar 07, 2025