|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cryptocurrency News Articles
Sa2VA: A Unified Model for Dense Grounded Understanding of Images and Videos
Jan 13, 2025 at 03:31 am
Researchers from UC Merced, Bytedance Seed, Wuhan University, and Peking University have proposed Sa2VA, a groundbreaking unified model designed for a dense grounded understanding of images and videos.
Multi-Modal Large Language Models (MLLMs) have seen rapid advancements in handling various image and video-related tasks, including visual question answering, narrative generation, and interactive editing. However, achieving fine-grained video content understanding, such as pixel-level segmentation, tracking with language descriptions, and performing visual question answering on specific video prompts, still poses a critical challenge in this field. State-of-the-art video perception models excel at tasks like segmentation and tracking but lack open-ended language understanding and conversation capabilities. At the same time, video MLLMs demonstrate strong performance in video comprehension and question answering but fall short in handling perception tasks and visual prompts.
Existing attempts to address video understanding challenges have followed two main approaches: MLLMs and Referring Segmentation systems. Initially, MLLMs focused on developing improved multi-modal fusion methods and feature extractors, eventually evolving towards instruction tuning on LLMs with frameworks like LLaVA. Recent developments have attempted to unify image, video, and multi-image analysis in single frameworks, such as LLaVA-OneVision. In parallel, Referring Segmentation systems have progressed from basic fusion modules to transformer-based methods that integrate segmentation and tracking within videos. However, these solutions lack a comprehensive integration of perception and language understanding capabilities.
To overcome this limitation, researchers from UC Merced, Bytedance Seed, Wuhan University, and Peking University have proposed Sa2VA, a groundbreaking unified model for a dense grounded understanding of images and videos. The model differentiates itself by supporting a comprehensive range of image and video tasks through minimal one-shot instruction tuning, addressing the limitations of existing multi-modal large language models. Sa2VA’s innovative approach integrates SAM-2 with LLaVA, unifying text, image, and video in a shared LLM token space. The researchers have also introduced Ref-SAV, an extensive auto-labeled dataset containing over 72K object expressions in complex video scenes, with 2K manually validated video objects to ensure robust benchmarking capabilities.
Sa2VA’s architecture integrates two main components: a LLaVA-like model and SAM-2, connected through a novel decoupled design. The LLaVA-like component consists of a visual encoder processing images and videos, a visual projection layer, and an LLM for text token prediction. The system employs a unique decoupled approach where SAM-2 operates alongside the pre-trained LLaVA model without direct token exchange, maintaining computational efficiency and enabling plug-and-play functionality with various pre-trained MLLMs. The key innovation lies in the connection mechanism using a special “[SEG]” token, allowing SAM-2 to generate segmentation masks while enabling gradient backpropagation through the “[SEG]” token to optimize the MLLM’s prompt generation capabilities.
The Sa2VA model achieves state-of-the-art results on referring segmentation tasks, with Sa2VA-8B scoring 81.6, 76.2, and 78.9 cIoU on RefCOCO, RefCOCO+, and RefCOCOg respectively, outperforming previous systems like GLaMM-7B. In conversational capabilities, Sa2VA shows strong performance with scores of 2128 on MME, 81.6 on MMbench, and 75.1 on SEED-Bench. The model excels in video benchmarks, surpassing previous state-of-the-art VISA-13B by substantial margins on MeVIS, RefDAVIS17, and ReVOS. Moreover, Sa2VA’s performance is noteworthy considering its smaller model size compared to competitors, showing its efficiency and effectiveness across both image and video understanding tasks.
In this paper, researchers introduced Sa2VA which represents a significant advancement in multi-modal understanding by successfully integrating SAM-2’s video segmentation capabilities with LLaVA’s language processing abilities. The framework's versatility is shown through its ability to handle diverse image and video understanding tasks with minimal one-shot instruction tuning, addressing the long-standing challenge of combining perception and language understanding. Sa2VA’s strong performance across multiple benchmarks, from referring segmentation to conversational tasks, validates its effectiveness as a unified solution for a dense, grounded understanding of visual content, marking a significant step forward in the multi-modal AI systems field.
Check out the Paper and Model on Hugging Face. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 65k+ ML SubReddit.
FREE UPCOMING AI WEBINAR (JAN 15, 2025): Boost LLM Accuracy with Synthetic Data and Evaluation Intelligence
Join this webinar to gain actionable insights into boosting LLM model performance and accuracy while safeguarding data privacy.output
Disclaimer:info@kdj.com
The information provided is not trading advice. kdj.com does not assume any responsibility for any investments made based on the information provided in this article. Cryptocurrencies are highly volatile and it is highly recommended that you invest with caution after thorough research!
If you believe that the content used on this website infringes your copyright, please contact us immediately (info@kdj.com) and we will delete it promptly.
-
- The 7 Best Coins Poised to Redefine the Cryptocurrency Landscape and Deliver Exponential Returns
- Jan 13, 2025 at 12:50 pm
- Cryptocurrencies continue to make headlines with their potential for exponential returns, catching the attention of savvy investors worldwide. Recent developments in blockchain technology, regulatory clarity, and mass adoption have only strengthened the narrative that digital assets are here to stay. As we step into the future of decentralised finance, there's no better time to explore the best coins for exponential returns—projects poised to redefine the landscape.
-
- Top Cryptocurrencies to Watch in 2025: Bitcoin, Ethereum, and Emerging Altcoins
- Jan 13, 2025 at 12:50 pm
- The cryptocurrency market in 2025 is abuzz with new trends and technological creation that are shaping future investing. From the rise of decentralized finance (DeFi) to the growing popularity of meme coin, investor are keenly watching how these growing might impact the market dynamics. Here, we turn over into the top cryptocurrencies to watch in 2025, admit Bitcoin, Ethereum, and emerging altcoins.
-
- January 2025’s Best Crypto Projects: BlockDAG (BDAG), Tron (TRX), Avalanche (AVAX), and Chainlink (LINK)
- Jan 13, 2025 at 12:50 pm
- This month, several cryptocurrencies are standing out, promising significant growth in 2025. Known for their innovative technology, strong returns on investment, and robust growth potential, these coins are making headlines.