bitcoin
bitcoin

$98575.23 USD 

-0.21%

ethereum
ethereum

$3364.45 USD 

0.73%

tether
tether

$1.00 USD 

0.05%

solana
solana

$257.35 USD 

-0.18%

bnb
bnb

$664.88 USD 

6.49%

xrp
xrp

$1.54 USD 

8.10%

dogecoin
dogecoin

$0.473137 USD 

21.56%

usd-coin
usd-coin

$0.999919 USD 

0.00%

cardano
cardano

$1.07 USD 

22.23%

tron
tron

$0.216214 USD 

8.78%

avalanche
avalanche

$42.42 USD 

13.47%

shiba-inu
shiba-inu

$0.000027 USD 

10.90%

toncoin
toncoin

$5.71 USD 

3.47%

stellar
stellar

$0.436362 USD 

49.76%

polkadot-new
polkadot-new

$7.71 USD 

26.33%

加密货币新闻

DoT:思维框架图增强大型语言模型的推理能力

2024/09/20 15:30

思维图 (DoT) 框架建立在这些先前方法的基础上,将它们的优势集成到单个法学硕士内的统一模型中。通过将推理表示为有向无环图 (DAG),DoT 捕捉逻辑演绎的细微差别,同时保持计算效率。

DoT:思维框架图增强大型语言模型的推理能力

Researchers have proposed a novel framework, Diagram of Thought (DoT), to enhance reasoning capabilities in large language models (LLMs). This framework integrates iterative reasoning, natural language critiques, and auto-regressive next-token prediction with role-specific tokens. The theoretical foundation of DoT in Topos theory ensures logical consistency and soundness in the reasoning process.

研究人员提出了一种新颖的框架——思维图(DoT),以增强大型语言模型(LLM)的推理能力。该框架集成了迭代推理、自然语言批评以及具有特定于角色的标记的自回归下一个标记预测。 Topos理论中DoT的理论基础保证了推理过程中逻辑的一致性和健全性。

This framework is constructed as a directed acyclic graph (DAG) that incorporates propositions, critiques, refinements, and verifications. The methodology employs role-specific tokens for proposing, criticizing, and summarizing, which facilitates iterative improvement of propositions.

该框架被构建为一个有向无环图(DAG),其中包含命题、批评、改进和验证。该方法论采用角色特定的标记来提出、批评和总结,这有利于命题的迭代改进。

Auto-regressive next-token prediction enables seamless transitions between proposing ideas and critical evaluation, enriching the feedback loop without external intervention. This approach streamlines the reasoning process within a single LLM, addressing the limitations of previous frameworks.

自动回归下一个标记预测可以实现提出想法和批判性评估之间的无缝过渡,从而丰富反馈循环,而无需外部干预。这种方法简化了单个法学硕士内的推理过程,解决了以前框架的局限性。

The DoT framework is formalized within Topos theory, providing a robust mathematical foundation that ensures logical consistency and soundness in the reasoning process. This formalism clarifies the relationship between reasoning processes and categorical logic, which is crucial for reliable outcomes in LLMs.

DoT 框架在 Topos 理论中形式化,提供了坚实的数学基础,确保推理过程中的逻辑一致性和健全性。这种形式主义澄清了推理过程和分类逻辑之间的关系,这对于法学硕士的可靠结果至关重要。

While specific experimental results are not detailed, the integration of critiques and dynamic reasoning aspects aims to enhance the model’s ability to handle complex reasoning tasks effectively. The methodology focuses on improving both training and inference processes, potentially advancing the capabilities of next-generation reasoning-specialized models.

虽然具体的实验结果尚未详细说明,但批评和动态推理方面的整合旨在增强模型有效处理复杂推理任务的能力。该方法侧重于改进训练和推理过程,有可能提高下一代推理专用模型的能力。

The Diagram of Thought (DoT) framework demonstrates enhanced reasoning capabilities in large language models through a directed acyclic graph structure. It facilitates the iterative improvement of propositions via natural language feedback and role-specific contributions. The Topos-theoretic validation ensures logical consistency and soundness. Implemented within a single model, DoT streamlines both training and inference processes, eliminating the need for multiple models or external control mechanisms. This approach enables exploration of complex reasoning pathways, resulting in more accurate conclusions and coherent reasoning processes. The framework's effectiveness positions it as a significant advancement in developing reasoning-specialized models for complex tasks.

思维图 (DoT) 框架通过有向无环图结构展示了大型语言模型中增强的推理能力。它通过自然语言反馈和特定于角色的贡献促进命题的迭代改进。拓扑理论验证确保了逻辑的一致性和健全性。 DoT 在单个模型中实现,简化了训练和推理过程,消除了对多个模型或外部控制机制的需求。这种方法可以探索复杂的推理路径,从而得出更准确的结论和连贯的推理过程。该框架的有效性使其成为开发复杂任务推理专用模型的重大进步。

In conclusion, the DoT framework integrates iterative reasoning, natural language critiques, and auto-regressive next-token prediction with role-specific tokens. The theoretical foundation in Topos theory ensures logical consistency and soundness, while the practical implementation enables efficient and coherent reasoning processes within a single large language model. This framework advances the development of next-generation reasoning-specialized models for handling complex reasoning tasks effectively.

总之,DoT 框架将迭代推理、自然语言批评以及自回归下一个标记预测与特定于角色的标记集成在一起。 Topos理论的理论基础确保了逻辑的一致性和健全性,而实际实现则在单个大型语言模型中实现了高效且连贯的推理过程。该框架促进了下一代推理专用模型的开发,以有效处理复杂的推理任务。

新闻来源:www.marktechpost.com

免责声明:info@kdj.com

所提供的信息并非交易建议。根据本文提供的信息进行的任何投资,kdj.com不承担任何责任。加密货币具有高波动性,强烈建议您深入研究后,谨慎投资!

如您认为本网站上使用的内容侵犯了您的版权,请立即联系我们(info@kdj.com),我们将及时删除。

2024年11月23日 发表的其他文章