Market Cap: $2.9887T 3.210%
Volume(24h): $120.4006B -15.930%
  • Market Cap: $2.9887T 3.210%
  • Volume(24h): $120.4006B -15.930%
  • Fear & Greed Index:
  • Market Cap: $2.9887T 3.210%
Cryptos
Topics
Cryptospedia
News
CryptosTopics
Videos
Top News
Cryptos
Topics
Cryptospedia
News
CryptosTopics
Videos
bitcoin
bitcoin

$91950.782490 USD

5.02%

ethereum
ethereum

$2294.491836 USD

4.33%

xrp
xrp

$2.509390 USD

2.51%

tether
tether

$1.000095 USD

0.02%

bnb
bnb

$607.189640 USD

2.41%

solana
solana

$149.261380 USD

4.01%

usd-coin
usd-coin

$0.999917 USD

-0.03%

cardano
cardano

$0.944236 USD

0.60%

dogecoin
dogecoin

$0.214017 USD

7.05%

tron
tron

$0.245479 USD

1.44%

pi
pi

$1.907150 USD

0.33%

chainlink
chainlink

$17.337094 USD

13.85%

hedera
hedera

$0.248356 USD

-2.66%

stellar
stellar

$0.300477 USD

1.02%

unus-sed-leo
unus-sed-leo

$9.918046 USD

0.25%

Cryptocurrency News Articles

from the notorious zinc dendrite growthoutput: title: Working principle of PPGA: Passivating zinc surface and modulating water hydrogen bond network

Feb 20, 2025 at 10:05 pm

The water-soluble PPGA is widely employed in industries as a cathodic corrosion inhibitor, effectively halting scale formation at substoichiometric level by intervening in one or more steps of the scale formation processes, such as aggregation, nucleation, crystal growth, and agglomeration33,34,35,36.

from the notorious zinc dendrite growthoutput: title: Working principle of PPGA: Passivating zinc surface and modulating water hydrogen bond network

suffers from zinc dendrite growth and parasitic HER during the charging process, both of which lead to low coulombic efficiency and poor cycling stability47,48,49. To evaluate the capability of PPGA for flow battery applications, we assembled a Zn|PZS|V2O5 flow battery with a flow rate of 20 mL min−1 and a capacity of 20 mAh. As shown in Fig. 6a, the flow battery exhibited a high initial CE of 96.5% at 20 mA cm−2, 20 mAh, which gradually increased to 99.5% after 20 cycles. In contrast, the flow battery with BZS as the catholyte experienced a low initial CE of 88.2% and quickly dropped to 70.2% after 20 cycles. The coulombic efficiency of the flow battery with PZS was maintained at a high level during the following 100 cycles at 20 mA cm−2, 20 mAh (Fig. 6b). The flow battery with BZS as the catholyte encountered a fast capacity decay and finally short-circuited after 50 cycles at 20 mA cm−2, 20 mAh (Fig. 6c). Notably, the flow battery with PZS as the catholyte exhibited a stable capacity of 18.5 mAh at 20 mA cm−2, 20 mAh for 200 cycles without any capacity loss or short circuit. The voltage efficiency of the flow battery with PZS as the catholyte was maintained at a high level during the 200 cycles at 20 mA cm−2, 20 mAh (Fig. 6d). Instead, the voltage efficiency of the flow battery with BZS as the catholyte quickly dropped to 60% after 50 cycles at 20 mA cm−2, 20 mAh. The flow battery with PZS as the catholyte exhibited a high energy efficiency of 96% at 20 mA cm−2, 20 mAh, which gradually increased to 99% after 20 cycles (Fig. 6e). In contrast, the flow battery with BZS as the catholyte showed a low initial energy efficiency of 84% and quickly dropped to 66% after 20 cycles. The energy efficiency of the flow battery with PZS was maintained at a high level during the following 100 cycles at 20 mA cm−2, 20 mAh (Fig. 6f). The flow battery with BZS as the catholyte encountered a fast energy efficiency decay and finally short-circuited after 50 cycles at 20 mA cm−2, 20 mAh (Fig. 6g). Notably, the flow battery with PZS as the catholyte exhibited a stable energy efficiency of 96% at 20 mA cm−2, 20 mAh for 200 cycles without any capacity loss or short circuit.

suffers from zinc dendrite growth and parasitic HER during the charging process, both of which lead to low coulombic efficiency and poor cycling stability47,48,49. To evaluate the capability of PPGA for flow battery applications, we assembled a Zn|PZS|V2O5 flow battery with a flow rate of 20 mL min−1 and a capacity of 20 mAh. As shown in Fig. 6a, the flow battery exhibited a high initial CE of 96.5% at 20 mA cm−2, 20 mAh, which gradually increased to 99.5% after 20 cycles. In contrast, the flow battery with BZS as the catholyte experienced a low initial CE of 88.2% and quickly dropped to 70.2% after 20 cycles. The coulombic efficiency of the flow battery with PZS was maintained at a high level during the following 100 cycles at 20 mA cm−2, 20 mAh (Fig. 6b). The flow battery with BZS as the catholyte encountered a fast capacity decay and finally short-circuited after 50 cycles at 20 mA cm−2, 20 mAh (Fig. 6c). Notably, the flow battery with PZS as the catholyte exhibited a stable capacity of 18.5 mAh at 20 mA cm−2, 20 mAh for 200 cycles without any capacity loss or short circuit. The voltage efficiency of the flow battery with PZS as the catholyte was maintained at a high level during the 200 cycles at 20 mA cm−2, 20 mAh (Fig. 6d). Instead, the voltage efficiency of the flow battery with BZS as the catholyte quickly dropped to 60% after 50 cycles at 20 mA cm−2, 20 mAh. The flow battery with PZS as the catholyte exhibited a high energy efficiency of 96% at 20 mA cm−2, 20 mAh, which gradually increased to 99% after 20 cycles (Fig. 6e). In contrast, the flow battery with BZS as the catholyte showed a low initial energy efficiency of 84% and quickly dropped to 66% after 20 cycles. The energy efficiency of the flow battery with PZS was maintained at a high level during the following 100 cycles at 20 mA cm−2, 20 mAh (Fig. 6f). The flow battery with BZS as the catholyte encountered a fast energy efficiency decay and finally short-circuited after 50 cycles at 20 mA cm−2, 20 mAh (Fig. 6g). Notably, the flow battery with PZS as the catholyte exhibited a stable energy efficiency of 96% at 20 mA cm−2, 20 mAh for 200 cycles without any capacity loss or short circuit.

a Initial coulombic efficiency, b coulombic efficiency, c capacity, d voltage efficiency, e initial energy efficiency, f energy efficiency, and g capacity of Zn|PZS|V2O5 flow batteries at 20 mA cm−2, 20 mAh. All tests were performed at around 25 oC. The positive electrode mass loading is around 20 mg cm−2.output

Disclaimer:info@kdj.com

The information provided is not trading advice. kdj.com does not assume any responsibility for any investments made based on the information provided in this article. Cryptocurrencies are highly volatile and it is highly recommended that you invest with caution after thorough research!

If you believe that the content used on this website infringes your copyright, please contact us immediately (info@kdj.com) and we will delete it promptly.

Other articles published on Mar 06, 2025