市值: $2.5012T 1.900%
成交额(24h): $148.6232B 6.620%
  • 市值: $2.5012T 1.900%
  • 成交额(24h): $148.6232B 6.620%
  • 恐惧与贪婪指数:
  • 市值: $2.5012T 1.900%
加密货币
话题
百科
资讯
加密话题
视频
热门新闻
加密货币
话题
百科
资讯
加密话题
视频
bitcoin
bitcoin

$81582.964513 USD

7.87%

ethereum
ethereum

$1608.086988 USD

13.28%

tether
tether

$0.999726 USD

0.05%

xrp
xrp

$1.980469 USD

12.45%

bnb
bnb

$574.061663 USD

5.17%

usd-coin
usd-coin

$0.999912 USD

-0.02%

solana
solana

$115.417458 USD

11.49%

dogecoin
dogecoin

$0.154518 USD

10.41%

tron
tron

$0.238185 USD

4.49%

cardano
cardano

$0.611545 USD

10.46%

unus-sed-leo
unus-sed-leo

$9.390006 USD

2.82%

chainlink
chainlink

$12.255909 USD

14.28%

toncoin
toncoin

$3.030692 USD

1.96%

avalanche
avalanche

$17.937379 USD

11.65%

stellar
stellar

$0.234331 USD

7.41%

加密货币新闻

TAIP:测试时间适应分子动力学的原子间潜力

2025/02/23 03:08

我们提出了一种新颖的在线测试时间适应策略(TAIP),以提高机器学习间原子势的准确性和普遍性(MLIP)

TAIP:测试时间适应分子动力学的原子间潜力

Our work introduces a novel online test-time adaptation strategy for improving the performance of interatomic potentials on unseen molecular structures. The method is applied to two widely used invariant and equivariant machine learning interatomic potentials, namely SchNet and PaiNN, respectively. We demonstrate the superior performance of our method on multiple datasets, including small organic molecules, isomers of C7O2H10, liquid water, ice, and electrolyte solutions of different concentrations. The test data from these datasets are designed to have a larger distribution shift from the training data, and are therefore used to investigate the improvement in generalizability achieved by our method. We evaluate the performance of the models on fixed datasets and in molecular dynamics simulations. The results show that our method can enhance the accuracy of interatomic potentials on unseen molecular structures, and it is compatible with complex systems featuring periodic boundary conditions. Moreover, we explore the impact of our method on feature distributions through dimensionality reductions, which provides insights into the mechanism behind the improvement from the perspective of feature embedding.

我们的工作介绍了一种新型的在线测试时间适应策略,以提高原子间潜能对看不见的分子结构的性能。该方法分别应用于两种广泛使用的不变式机器学习间的原子势,即Schnet和Painn。我们证明了我们在多个数据集上的出色性能,包括小有机分子,C7O2H10的异构体,不同浓度的液态水,冰和电解质溶液。这些数据集中的测试数据旨在与培训数据具有更大的分布变化,因此用于研究通过我们的方法实现的概括性的提高。我们在固定数据集和分子动力学模拟中评估模型的性能。结果表明,我们的方法可以提高原子间电位在看不见的分子结构上的准确性,并且与具有周期性边界条件的复杂系统兼容。此外,我们通过降低维度探索了我们方法对特征分布的影响,从功能嵌入的角度来看,它为改进的机制提供了见解。

免责声明:info@kdj.com

所提供的信息并非交易建议。根据本文提供的信息进行的任何投资,kdj.com不承担任何责任。加密货币具有高波动性,强烈建议您深入研究后,谨慎投资!

如您认为本网站上使用的内容侵犯了您的版权,请立即联系我们(info@kdj.com),我们将及时删除。

2025年04月11日 发表的其他文章