![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
变压器编码器是一种深度学习体系结构,旨在有效地处理输入序列。
A transformer encoder is a deep learning architecture that can process input sequences. It is a variant of the transformer model, which was introduced in a seminal paper by researchers at Google in 2017. Unlike traditional recurrent neural networks (RNNs), transformers process all tokens in parallel, making them more efficient for large data sets.
变压器编码器是一种可以处理输入序列的深度学习体系结构。它是变压器模型的一种变体,该变量是在2017年Google的研究人员的开创性论文中引入的。与传统的经常性神经网络(RNN)不同,Transformers都并行处理所有标记,从而使它们在大型数据集中更有效。
Transformers have revolutionized natural language processing (NLP) and are now impacting other domains like computer vision. They consist of two main parts: an encoder and a decoder. The encoder reads the input sequence and learns a rich representation of its meaning and context. This encoded representation can then be used by the decoder to generate output sequences in the same language or translate them into another language.
变形金刚彻底改变了自然语言处理(NLP),现在正在影响其他域,例如计算机视觉。它们由两个主要部分组成:一个编码器和一个解码器。编码器读取输入序列,并了解其含义和上下文的丰富表示。然后,解码器可以使用此编码的表示形式以相同语言生成输出序列或将其转换为另一种语言。
A transformer encoder is a type of transformer that is designed to extract useful features from input sequences. It is built from several identical layers, each of which performs three operations:
变压器编码器是一种旨在从输入序列中提取有用的特征的变压器。它是由几个相同的层构建的,每个层都执行三个操作:
Each layer also uses a residual connection and layer normalization to improve the flow of gradients and prevent overfitting.
每一层还使用剩余连接和层归一化,以改善梯度流并防止过度拟合。
Here is an example of how to build a transformer encoder in PyTorch:
这是如何在Pytorch中构建变压器编码器的示例:
```python
``python
import torch
导入火炬
from torch import nn
从火炬进口
class TransformerEncoderLayer(nn.Module):
类TransformerEncoderlayer(nn.Module):
def __init__(self, d_model, nhead, dropout=0.1):
def __init __(self,d_model,nhead,辍学= 0.1):
super().__init__()
super().__ init __()
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.multihead_attn = nn.multiheadateention(d_model,nhead,辍学=辍学)
self.linear1 = nn.Linear(d_model, d_model * 4)
self.linear1 = nn.linear(d_model,d_model * 4)
self.linear2 = nn.Linear(d_model * 4, d_model)
self.linear2 = nn.linear(d_model * 4,d_model)
self.dropout = nn.Dropout(dropout)
self.dropout = nn.dropout(辍学)
self.activation = nn.ReLU()
self.activation = nn.relu()
self.layer_norm1 = nn.LayerNorm(d_model)
self.layer_norm1 = nn.layernorm(d_model)
self.layer_norm2 = nn.LayerNorm(d_model)
self.layer_norm2 = nn.layernorm(d_model)
def forward(self, x, mask=None):
def向前(self,x,mask = none):
x = self.layer_norm1(x)
x = self.layer_norm1(x)
x = self.multihead_attn(x, x, x, mask, output_ranges=None, attn_output_weights=None, keepdims=False, use_output_ranges=False, )['output']
x = self.multihead_attn(x,x,x,x,mask,utput_ranges = none,attn_output_weights = none,keepdims = false,use_output_ranges = false,)['output'output']
x = self.dropout(x)
x = self.dropout(x)
x = x + x
x = x + x
x = self.layer_norm2(x)
x = self.layer_norm2(x)
temp = self.linear2(self.activation(self.linear1(x)))
temp = self.linear2(self.Activation(self.linear1(x)))
x = self.dropout(temp)
x = self.dropout(temp)
x = x + x
x = x + x
return x
返回x
class TransformerEncoder(nn.Module):
类TransformerEncoder(nn.Module):
def __init__(self, d_model, nhead, num_layers, dropout=0.1):
def __init __(self,d_model,nhead,num_layers,辍学= 0.1):
super().__init__()
super().__ init __()
self.layers = nn.ModuleList(
self.layers = nn.modulelist(
[TransformerEncoderLayer(d_model, nhead, dropout) for _ in range(num_layers)]
[transformerEncoderlayer(d_model,nhead,辍学),用于_范围(num_layers)]
)
)
self.num_layers = num_layers
self.num_layers = num_layers
def forward(self, x, mask=None):
def向前(self,x,mask = none):
for i in range(self.num_layers):
对于我的范围(self.num_layers):
x = self.layers[i](x, mask)
x = self.layers [i](x,蒙版)
return x
返回x
```
````````
This code defines two classes: TransformerEncoderLayer and TransformerEncoder. TransformerEncoderLayer implements a single layer of the transformer encoder, which includes multi-head self-attention, a feedforward network, and two layer normalization layers. TransformerEncoder stacks multiple TransformerEncoderLayer instances to create a complete transformer encoder.
该代码定义了两个类:TransformerenCoderlayer和Transfermerencoder。 TransformerenCoderlayer实现了变压器编码器的单层,其中包括多头自我注意力,馈电网络和两个层归一层层。 TransformerEncoder堆叠多个TransformerenCoderlayer实例以创建一个完整的变压器编码器。
The transformer encoder can be used to process various types of input sequences, such as text, الصوت, or time series data. It is a powerful architecture that can extract rich features from sequential data and achieve state-of-the-art results on a wide range of tasks.
变压器编码器可用于处理各种类型的输入序列,例如文本,ZIص#或时间序列数据。这是一个强大的体系结构,可以从连续数据中提取丰富的功能,并在各种任务上获得最新的结果。
In addition to the components mentioned above, transformer encoders may also include other modules, such as convolutional layers, recurrent layers, or positional encodings. These modules can be used to further improve the performance of the transformer encoder on specific tasks.
除了上述组件外,变压器编码器还可以包括其他模块,例如卷积层,复发层或位置编码。这些模块可用于进一步提高变压器编码器在特定任务上的性能。
Here are some examples of how the transformer encoder can be used in different applications:
以下是如何在不同应用程序中使用变压器编码器的一些示例:
In natural language processing (NLP), transformer encoders are used to extract meaning from text. For example, they can be used to perform tasks such as sentiment analysis, question answering, and machine translation.
在自然语言处理(NLP)中,变压器编码器用于从文本中提取含义。例如,它们可用于执行诸如情感分析,问答和机器翻译之类的任务。
In computer vision, transformer encoders are used to process images and videos. For example, they can be used to perform tasks such as image classification, object detection, and video segmentation.
在计算机视觉中,变压器编码器用于处理图像和视频。例如,它们可用于执行任务,例如图像分类,对象检测和视频分割。
In time series analysis, transformer encoders can be used to extract patterns from time-varying data. For example, they can be used to perform tasks such as anomaly detection, time series forecasting, and activity recognition.
在时间序列分析中,变压器编码器可用于从随时间变化的数据中提取模式。例如,它们可用于执行任务,例如异常检测,时间序列预测和活动识别。
Overall, the transformer encoder is a versatile and powerful architecture that has revolutionized the field of deep learning. It is used in a wide range of applications and continues to be an active area of research
总体而言,变压器编码器是一种多功能且强大的体系结构,彻底改变了深度学习领域。它用于广泛的应用中,并继续是研究的活跃领域
免责声明:info@kdj.com
所提供的信息并非交易建议。根据本文提供的信息进行的任何投资,kdj.com不承担任何责任。加密货币具有高波动性,强烈建议您深入研究后,谨慎投资!
如您认为本网站上使用的内容侵犯了您的版权,请立即联系我们(info@kdj.com),我们将及时删除。
-
-
-
- 随着交易费用达到历史最低低点,以太坊(ETH)网络活动降至2020级
- 2025-04-03 23:35:12
- 交易费用达到了历史最低水平,削弱了以太坊的通货膨胀模型并增加了通货膨胀风险。
-
-
- 比特币OS:解锁比特币的潜力超出付款
- 2025-04-03 23:30:12
- 长期以来,比特币被称为数字黄金,这是一个安全的价值存储和简单的点对点支付网络。但是,它的基层不是
-
-
- XRP持有人再次狂欢!那真的看好吗?”
- 2025-04-03 23:25:12
- 在2024年11月和12月,XRP的价值增长显着增长。反过来,这创造了利润的趋势
-
- 关于第2层费用的有争议的辩论
- 2025-04-03 23:25:12
- 以太坊的第2层缩放生态系统一直是激烈辩论的重点,遵循提出这些网络的费用的提案。
-