![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
變壓器編碼器是一種深度學習體系結構,旨在有效地處理輸入序列。
A transformer encoder is a deep learning architecture that can process input sequences. It is a variant of the transformer model, which was introduced in a seminal paper by researchers at Google in 2017. Unlike traditional recurrent neural networks (RNNs), transformers process all tokens in parallel, making them more efficient for large data sets.
變壓器編碼器是一種可以處理輸入序列的深度學習體系結構。它是變壓器模型的一種變體,該變量是在2017年Google的研究人員的開創性論文中引入的。與傳統的經常性神經網絡(RNN)不同,Transformers都並行處理所有標記,從而使它們在大型數據集中更有效。
Transformers have revolutionized natural language processing (NLP) and are now impacting other domains like computer vision. They consist of two main parts: an encoder and a decoder. The encoder reads the input sequence and learns a rich representation of its meaning and context. This encoded representation can then be used by the decoder to generate output sequences in the same language or translate them into another language.
變形金剛徹底改變了自然語言處理(NLP),現在正在影響其他域,例如計算機視覺。它們由兩個主要部分組成:一個編碼器和一個解碼器。編碼器讀取輸入序列,並了解其含義和上下文的豐富表示。然後,解碼器可以使用此編碼的表示形式以相同語言生成輸出序列或將其轉換為另一種語言。
A transformer encoder is a type of transformer that is designed to extract useful features from input sequences. It is built from several identical layers, each of which performs three operations:
變壓器編碼器是一種旨在從輸入序列中提取有用的特徵的變壓器。它是由幾個相同的層構建的,每個層都執行三個操作:
Each layer also uses a residual connection and layer normalization to improve the flow of gradients and prevent overfitting.
每一層還使用剩餘連接和層歸一化,以改善梯度流並防止過度擬合。
Here is an example of how to build a transformer encoder in PyTorch:
這是如何在Pytorch中構建變壓器編碼器的示例:
```python
``python
import torch
導入火炬
from torch import nn
從火炬進口
class TransformerEncoderLayer(nn.Module):
類TransformerEncoderlayer(nn.Module):
def __init__(self, d_model, nhead, dropout=0.1):
def __init __(self,d_model,nhead,輟學= 0.1):
super().__init__()
super().__ init __()
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.multihead_attn = nn.multiheadateention(d_model,nhead,輟學=輟學)
self.linear1 = nn.Linear(d_model, d_model * 4)
self.linear1 = nn.linear(d_model,d_model * 4)
self.linear2 = nn.Linear(d_model * 4, d_model)
self.linear2 = nn.linear(d_model * 4,d_model)
self.dropout = nn.Dropout(dropout)
self.dropout = nn.dropout(輟學)
self.activation = nn.ReLU()
self.activation = nn.relu()
self.layer_norm1 = nn.LayerNorm(d_model)
self.layer_norm1 = nn.layernorm(d_model)
self.layer_norm2 = nn.LayerNorm(d_model)
self.layer_norm2 = nn.layernorm(d_model)
def forward(self, x, mask=None):
def向前(self,x,mask = none):
x = self.layer_norm1(x)
x = self.layer_norm1(x)
x = self.multihead_attn(x, x, x, mask, output_ranges=None, attn_output_weights=None, keepdims=False, use_output_ranges=False, )['output']
x = self.multihead_attn(x,x,x,x,mask,utput_ranges = none,attn_output_weights = none,keepdims = false,use_output_ranges = false,)['output'output']
x = self.dropout(x)
x = self.dropout(x)
x = x + x
x = x + x
x = self.layer_norm2(x)
x = self.layer_norm2(x)
temp = self.linear2(self.activation(self.linear1(x)))
temp = self.linear2(self.Activation(self.linear1(x)))
x = self.dropout(temp)
x = self.dropout(temp)
x = x + x
x = x + x
return x
返回x
class TransformerEncoder(nn.Module):
類TransformerEncoder(nn.Module):
def __init__(self, d_model, nhead, num_layers, dropout=0.1):
def __init __(self,d_model,nhead,num_layers,輟學= 0.1):
super().__init__()
super().__ init __()
self.layers = nn.ModuleList(
self.layers = nn.modulelist(
[TransformerEncoderLayer(d_model, nhead, dropout) for _ in range(num_layers)]
[transformerEncoderlayer(d_model,nhead,輟學),用於_範圍(num_layers)]
)
)
self.num_layers = num_layers
self.num_layers = num_layers
def forward(self, x, mask=None):
def向前(self,x,mask = none):
for i in range(self.num_layers):
對於我的範圍(self.num_layers):
x = self.layers[i](x, mask)
x = self.layers [i](x,蒙版)
return x
返回x
```
````````
This code defines two classes: TransformerEncoderLayer and TransformerEncoder. TransformerEncoderLayer implements a single layer of the transformer encoder, which includes multi-head self-attention, a feedforward network, and two layer normalization layers. TransformerEncoder stacks multiple TransformerEncoderLayer instances to create a complete transformer encoder.
該代碼定義了兩個類:TransformerenCoderlayer和Transfermerencoder。 TransformerenCoderlayer實現了變壓器編碼器的單層,其中包括多頭自我注意力,饋電網絡和兩個層歸一層層。 TransformerEncoder堆疊多個TransformerenCoderlayer實例以創建一個完整的變壓器編碼器。
The transformer encoder can be used to process various types of input sequences, such as text, الصوت, or time series data. It is a powerful architecture that can extract rich features from sequential data and achieve state-of-the-art results on a wide range of tasks.
變壓器編碼器可用於處理各種類型的輸入序列,例如文本,ZIص#或時間序列數據。這是一個強大的體系結構,可以從連續數據中提取豐富的功能,並在各種任務上獲得最新的結果。
In addition to the components mentioned above, transformer encoders may also include other modules, such as convolutional layers, recurrent layers, or positional encodings. These modules can be used to further improve the performance of the transformer encoder on specific tasks.
除了上述組件外,變壓器編碼器還可以包括其他模塊,例如卷積層,復發層或位置編碼。這些模塊可用於進一步提高變壓器編碼器在特定任務上的性能。
Here are some examples of how the transformer encoder can be used in different applications:
以下是如何在不同應用程序中使用變壓器編碼器的一些示例:
In natural language processing (NLP), transformer encoders are used to extract meaning from text. For example, they can be used to perform tasks such as sentiment analysis, question answering, and machine translation.
在自然語言處理(NLP)中,變壓器編碼器用於從文本中提取含義。例如,它們可用於執行諸如情感分析,問答和機器翻譯之類的任務。
In computer vision, transformer encoders are used to process images and videos. For example, they can be used to perform tasks such as image classification, object detection, and video segmentation.
在計算機視覺中,變壓器編碼器用於處理圖像和視頻。例如,它們可用於執行任務,例如圖像分類,對象檢測和視頻分割。
In time series analysis, transformer encoders can be used to extract patterns from time-varying data. For example, they can be used to perform tasks such as anomaly detection, time series forecasting, and activity recognition.
在時間序列分析中,變壓器編碼器可用於從隨時間變化的數據中提取模式。例如,它們可用於執行任務,例如異常檢測,時間序列預測和活動識別。
Overall, the transformer encoder is a versatile and powerful architecture that has revolutionized the field of deep learning. It is used in a wide range of applications and continues to be an active area of research
總體而言,變壓器編碼器是一種多功能且強大的體系結構,徹底改變了深度學習領域。它用於廣泛的應用中,並繼續是研究的活躍領域
免責聲明:info@kdj.com
所提供的資訊並非交易建議。 kDJ.com對任何基於本文提供的資訊進行的投資不承擔任何責任。加密貨幣波動性較大,建議您充分研究後謹慎投資!
如果您認為本網站使用的內容侵犯了您的版權,請立即聯絡我們(info@kdj.com),我們將及時刪除。
-
- XRP持有人再次狂歡!那真的看好嗎? ”
- 2025-04-03 23:25:12
- 在2024年11月和12月,XRP的價值增長顯著增長。反過來,這創造了利潤的趨勢
-
- 關於第2層費用的有爭議的辯論
- 2025-04-03 23:25:12
- 以太坊的第2層縮放生態系統一直是激烈辯論的重點,遵循提出這些網絡的費用的提案。
-
-
-
- 英國跨國銀行標準憲章說,一個特殊的山寨幣可以大大優於比特幣
- 2025-04-03 23:15:12
- 根據銀行的分析師的說法,到2029年底,第1層區塊鏈雪崩的公用事業令牌avax可能會增加10倍以上。
-
-
- ACT代幣價格崩潰和市場影響
- 2025-04-03 23:10:12
- 該法令令牌成本崩潰直接造成的是Binance Exchange的保證金和利用更新,該更新造成了相當大的拋售效果。
-
- 佩佩(Mind)預售的想法達到780萬美元 - 下一個大加密投資機會
- 2025-04-03 23:10:12
- 目前,市場充滿了機會,一些項目提供了許多人稱為“世代相傳”的折扣。
-
- PI Network的價格暴跌激發了投資者的擔憂
- 2025-04-03 23:05:11
- 最近幾週,加密貨幣市場的價格轉向波動,PI Network(PI)也不例外。