![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
META的首席AI科学家,现代AI的先驱之一Yann Lecun最近认为自回归的大型语言模型(LLMS)从根本上存在缺陷。
Yann LeCun, Chief AI Scientist at Meta and one of the pioneers of modern AI, recently shared his thoughts on a fundamental limitation he sees in autoregressive Large Language Models (LLMs). According to LeCun, the probability of generating a correct response decreases exponentially with each token, making them impractical for long-form, reliable AI interactions.
META的首席AI科学家,现代AI的先驱之一Yann Lecun最近分享了他对他在自回归大型语言模型(LLMS)中看到的基本限制的想法。根据Lecun的说法,产生正确响应的概率随着每个令牌的指数呈指数降低,使其对于长形式,可靠的AI相互作用而言是不切实际的。
While I deeply respect LeCun’s work and approach to AI development and resonate with many of his insights, I believe this particular claim overlooks some key aspects of how LLMs function in practice. In this post, I’ll explain why autoregressive models are not inherently divergent and doomed, and how techniques like Chain-of-Thought (CoT) and Attentive Reasoning Queries (ARQs)—a method we’ve developed to achieve high-accuracy customer interactions with Parlant—effectively prove otherwise.
尽管我深深地尊重Lecun的工作和AI发展的方法并与他的许多见解产生共鸣,但我相信这一特殊主张忽略了LLM在实践中的功能的一些关键方面。在这篇文章中,我将解释为什么自回归模型本质上没有固有的分歧和注定,以及如何采用思想链(COT)和细心的推理查询(ARQ),这是我们开发的一种方法来实现高准确的客户与Parlant的相互作用 - 有效地证明了这一点。
What is Autoregression?
什么是自动性?
At its core, an LLM is a probabilistic model trained to generate text one token at a time. Given an input context, the model predicts the most likely next token, feeds it back into the original sequence, and repeats the process iteratively until a stop condition is met. This allows the model to generate anything from short responses to entire articles.
LLM的核心是一种概率模型,该模型训练了一次生成文本一个令牌。给定输入上下文,该模型可以预测最有可能的令牌,将其馈回原始序列,然后迭代地重复该过程,直到满足停止条件为止。这使该模型可以生成从简短响应到整个文章的任何内容。
For a deeper dive into autoregression, check out our recent technical blog post.
要更深入地了解自动性,请查看我们最近的技术博客文章。
Do Generation Errors Compound Exponentially?
生成错误是否呈指数级化?
LeCun’s argument can be unpacked as follows:
Lecun的论点可以被解开,如下所示:
Let P be the probability of making a generation error at each token.
令P为在每个令牌上造成生成误差的概率。
For an output of length n, the probability of maintaining coherence is (1-E)^n.
对于长度为n的输出,保持相干性的概率为(1-e)^n。
This leads to LeCun’s conclusion that for sufficiently long responses, the likelihood of maintaining coherence exponentially approaches zero, suggesting that autoregressive LLMs are inherently flawed.
这得出了莱肯的结论,即对于足够长的响应,保持连贯性的可能性将指数成倍接近零,这表明自回调的LLM固有有缺陷。
But here’s the problem: E is not constant.
但这是问题:e不是恒定的。
To put it simply, LeCun’s argument assumes that the probability of making a mistake in each new token is independent. However, LLMs don’t work that way.
简而言之,Lecun的论点假设在每个新令牌中犯错的可能性是独立的。但是,LLM不起作用。
As an analogy to what allows LLMs to overcome this problem, imagine you’re telling a story: if you make a mistake in one sentence, you can still correct it in the next one to keep the narrative coherent. The same applies to LLMs, especially when techniques like Chain-of-Thought (CoT) prompting guide them toward better reasoning by helping them reassess their own outputs along the way.
为了类比使LLM可以克服这个问题的原因,想象一下您是在讲一个故事:如果您在一个句子中犯了一个错误,那么您仍然可以在下一个句子中纠正它以保持叙事相干。 LLM同样适用,尤其是当诸如《经营链》(COT)之类的技术提示他们通过帮助他们在此过程中重新评估自己的输出来指导他们更好地推理时。
Why This Assumption is Flawed
为什么这个假设有缺陷
LLMs exhibit self-correction properties that prevent them from spiraling into incoherence.
LLM具有自校正特性,可防止它们螺旋形成不连贯。
Take Chain-of-Thought (CoT) prompting, which encourages the model to generate intermediate reasoning steps. CoT allows the model to consider multiple perspectives, improving its ability to converge to an acceptable answer. Similarly, Chain-of-Verification (CoV) and structured feedback mechanisms like ARQs guide the model in reinforcing valid outputs and discarding erroneous ones.
采取思想链(COT)提示,这鼓励模型生成中间的推理步骤。 COT允许该模型考虑多种观点,从而提高其收敛到可接受的答案的能力。同样,验证链(COV)和结构化反馈机制(如ARQ)指导该模型加强有效的输出并丢弃错误的输出。
A small mistake early on in the generation process doesn’t necessarily doom the final answer. Figuratively speaking, an LLM can double-check its work, backtrack, and correct errors on the go.
一代过程中的一个小错误不一定会注定最终答案。象征性地说,LLM可以仔细检查其工作,回溯和正确的错误。
Attentive Reasoning Queries (ARQs) are a Game-Changer
细心的推理查询(ARQ)是改变游戏规则的
At Parlant, we’ve taken this principle further in our work on Attentive Reasoning Queries (a research paper describing our results is currently in the works, but the implementation pattern can be explored in our open-source codebase). ARQs introduce reasoning blueprints that help the model maintain coherence throughout long completions by dynamically refocusing attention on key instructions at strategic points in the completion process, continuously preventing LLMs from diverging into incoherence. Using them, we’ve been able to maintain a large test suite that exhibits close to 100% consistency in generating correct completions for complex tasks.
在Parlant,我们在专门推理查询的工作中进一步采取了这一原则(描述我们结果的研究论文目前正在起作用,但是可以在我们的开源代码库中探索实施模式)。 ARQ引入了推理蓝图,通过在完成过程中的战略点上的关键指令进行动态重新关注,从而帮助该模型保持一致性,从而不断防止LLMS分流为不一致。使用它们,我们已经能够维护一个大型测试套件,该套件在为复杂的任务生成正确的完成时表现出接近100%的一致性。
This technique allows us to achieve much higher accuracy in AI-driven reasoning and instruction-following, which has been critical for us in enabling reliable and aligned customer-facing applications.
这项技术使我们能够在AI驱动的推理和遵循指导范围内实现更高的准确性,这对我们实现可靠且面向面向客户的应用程序至关重要。
Autoregressive Models Are Here to Stay
自回归模型在这里留下来
We think autoregressive LLMs are far from doomed. While long-form coherence is a challenge, assuming an exponentially compounding error rate ignores key mechanisms that mitigate divergence—from Chain-of-Thought reasoning to structured reasoning like ARQs.
我们认为自回归的LLM远未注定。虽然长形式的连贯性是一个挑战,但假设有指数级的复杂错误率忽略了减轻差异的关键机制,从想象力的推理到诸如ARQ之类的结构化推理。
If you’re interested in AI alignment and increasing the accuracy of chat agents using LLMs, feel free to explore Parlant’s open-source effort. Let’s continue refining how LLMs generate and structure knowledge.
如果您对使用LLM的AI对齐感兴趣并提高聊天代理的准确性,请随时探索Parlant的开源工作。让我们继续完善LLM的产生和结构知识。
免责声明:info@kdj.com
The information provided is not trading advice. kdj.com does not assume any responsibility for any investments made based on the information provided in this article. Cryptocurrencies are highly volatile and it is highly recommended that you invest with caution after thorough research!
If you believe that the content used on this website infringes your copyright, please contact us immediately (info@kdj.com) and we will delete it promptly.
-
- 公司比特币积累:改变股票估值的游戏规则
- 2025-02-12 17:06:11
- 比特币(Crypto:$ btc)不再仅仅是散户投资者的投机资产,它已成为公开交易公司的关键财务策略。
-
- 特朗普的“亲克赖特托”政策立场
- 2025-02-12 16:56:11
- 由于监管问题,美国专注于发展“国内硬币公司”韩国对“国内硬币公司”的歧视
-
- BCH Bliss 2025专注于Velma升级,采用
- 2025-02-12 16:56:11
- BCH BLISS 2025会议定于今年5月13日至15日举行,看到所有背景的开发人员,用户和支持者准备收敛
-
-
-
- Lightchain AI:区块链创新的新标准
- 2025-02-12 16:46:11
- Lightchain AI正在加密空间中成为强大的力量,提供了开创性的AI集成区块链技术。
-
-
-