bitcoin
bitcoin

$98623.03 USD 

-0.08%

ethereum
ethereum

$3329.46 USD 

0.15%

tether
tether

$1.00 USD 

0.00%

solana
solana

$254.25 USD 

-1.28%

bnb
bnb

$642.30 USD 

1.16%

xrp
xrp

$1.55 USD 

13.29%

dogecoin
dogecoin

$0.428692 USD 

8.44%

usd-coin
usd-coin

$0.999886 USD 

0.01%

cardano
cardano

$1.07 USD 

23.31%

tron
tron

$0.205953 USD 

2.85%

avalanche
avalanche

$43.06 USD 

18.51%

shiba-inu
shiba-inu

$0.000027 USD 

9.74%

toncoin
toncoin

$5.50 USD 

-0.70%

stellar
stellar

$0.429881 USD 

53.93%

bitcoin-cash
bitcoin-cash

$537.21 USD 

9.75%

加密货币新闻

aiOla 推出 Whisper-Medusa:语音识别领域的突破性创新

2024/08/04 03:28

以色列人工智能初创公司 aiOla 推出了 Whisper-Medusa,在语音识别领域实现了突破性创新。这个新模型基于 OpenAI 的 Whisper 构建,处理速度显着提高了 50%,显着推进了自动语音识别 (ASR)。

aiOla 推出 Whisper-Medusa:语音识别领域的突破性创新

Israeli AI startup aiOla has unveiled a groundbreaking innovation in speech recognition with the launch of Whisper-Medusa. This new model, which builds upon OpenAI’s Whisper, achieves a remarkable 50% increase in processing speed, significantly advancing automatic speech recognition (ASR).

以色列人工智能初创公司 aiOla 推出了 Whisper-Medusa,在语音识别领域实现了突破性创新。这个新模型基于 OpenAI 的 Whisper 构建,处理速度显着提高了 50%,显着推进了自动语音识别 (ASR)。

aiOla's Whisper-Medusa incorporates a novel “multi-head attention” architecture that allows for the simultaneous prediction of multiple tokens. This development promises to revolutionize how AI systems translate and understand speech.

aiOla 的 Whisper-Medusa 采用新颖的“多头注意力”架构,允许同时预测多个令牌。这一发展有望彻底改变人工智能系统翻译和理解语音的方式。

The introduction of Whisper-Medusa represents a significant leap forward from the widely used Whisper model developed by OpenAI. While Whisper has set the standard in the industry with its ability to process complex speech, including various languages and accents, in near real-time, Whisper-Medusa takes this capability a step further.

Whisper-Medusa 的推出代表了 OpenAI 开发的广泛使用的 Whisper 模型的重大飞跃。虽然 Whisper 以其近乎实时处理复杂语音(包括各种语言和口音)的能力树立了行业标准,但 Whisper-Medusa 在此能力上又向前迈进了一步。

The key to this enhancement lies in its multi-head attention mechanism; this enables the model to predict ten tokens at each pass instead of the standard one. This architectural change results in a 50% increase in speech prediction speed and generation runtime without compromising accuracy.

这一增强的关键在于其多头注意力机制;这使得模型能够在每次传递时预测十个标记,而不是标准的标记。这一架构变化使语音预测速度和生成运行时间提高了 50%,而不会影响准确性。

aiOla emphasized the importance of releasing Whisper-Medusa as an open-source solution. By doing so, aiOla aims to foster innovation and collaboration within the AI community, encouraging developers and researchers to contribute to and build upon their work. This open-source approach will lead to further speed improvements and refinements, benefiting various applications across various sectors such as healthcare, fintech, and multimodal AI systems.

aiOla 强调了发布 Whisper-Medusa 作为开源解决方案的重要性。通过这样做,aiOla 旨在促进人工智能社区内的创新和协作,鼓励开发人员和研究人员为他们的工作做出贡献并继续发展。这种开源方法将进一步提高速度和完善,使医疗保健、金融科技和多模式人工智能系统等各个领域的各种应用受益。

The unique capabilities of Whisper-Medusa are particularly significant in the context of compound AI systems, which aim to understand & respond to user queries in almost real-time. Whisper-Medusa’s enhanced speed and efficiency make it a valuable asset when quick and accurate speech-to-text conversion is crucial. This is especially relevant in conversational AI applications, where real-time responses can greatly enhance user experience and productivity.

Whisper-Medusa 的独特功能在复合人工智能系统的背景下尤其重要,该系统旨在几乎实时地理解和响应用户查询。当快速、准确的语音到文本转换至关重要时,Whisper-Medusa 增强的速度和效率使其成为宝贵的资产。这在对话式人工智能应用程序中尤其重要,其中实时响应可以极大地增强用户体验和生产力。

The development process of Whisper-Medusa involved modifying Whisper’s architecture to incorporate the multi-head attention mechanism. This approach allows the model to jointly attend to information from different representation subspaces at other positions, using multiple “attention heads” in parallel. This innovative technique not only speeds up the prediction process but also maintains the high level of accuracy that Whisper is known for. They pointed out that improving the speed and latency of large language models (LLMs) is easier than ASR systems due to the complexity of processing continuous audio signals and handling noise or accents. However, aiOla’s novel approach has successfully addressed these challenges, resulting in a model nearly doubling the prediction speed.

Whisper-Medusa 的开发过程涉及修改 Whisper 的架构以纳入多头注意力机制。这种方法允许模型并行使用多个“注意力头”来共同关注来自其他位置的不同表示子空间的信息。这项创新技术不仅加快了预测过程,还保持了 Whisper 闻名的高准确度。他们指出,由于处理连续音频信号和处理噪声或口音的复杂性,提高大型语言模型 (LLM) 的速度和延迟比 ASR 系统更容易。然而,aiOla 的新颖方法成功地解决了这些挑战,使模型的预测速度几乎翻倍。

Training Whisper-Medusa involved a machine-learning approach called weak supervision. aiOla froze the main components of Whisper and used audio transcriptions generated by the model as labels to train additional token prediction modules. The initial version of Whisper-Medusa employs a 10-head model, with plans to expand to a 20-head version capable of predicting 20 tokens at a time. This scalability further enhances the model's speed and efficiency without compromising accuracy.

训练 Whisper-Medusa 涉及一种称为弱监督的机器学习方法。 aiOla 冻结了 Whisper 的主要组件,并使用模型生成的音频转录作为标签来训练额外的令牌预测模块。 Whisper-Medusa 的初始版本采用 10 头模型,计划扩展到能够一次预测 20 个令牌的 20 头版本。这种可扩展性进一步提高了模型的速度和效率,同时又不影响准确性。

Whisper-Medusa has been tested on real enterprise data use cases to ensure its performance in real-world scenarios; the company is still exploring early access opportunities with potential partners. The ultimate goal is to enable faster turnaround times in speech applications, paving the way for real-time responses. Imagine a virtual assistant like Alexa recognizing and responding to commands in seconds, significantly enhancing user experience and productivity.

Whisper-Medusa已经在真实的企业数据用例上进行了测试,以确保其在真实场景中的性能;该公司仍在与潜在合作伙伴探索早期访问机会。最终目标是在语音应用程序中实现更快的周转时间,为实时响应铺平道路。想象一下像 Alexa 这样的虚拟助手可以在几秒钟内识别并响应命令,从而显着增强用户体验和生产力。

In conclusion, aiOla’s Whisper-Medusa is poised to impact speech recognition substantially. By combining innovative architecture with an open-source approach, aiOla is driving the capabilities of ASR systems forward, making them faster and more efficient. The potential applications of Whisper-Medusa are vast, promising improvements in various sectors and paving the way for more advanced and responsive AI systems.

总之,aiOla 的 Whisper-Medusa 有望对语音识别产生重大影响。通过将创新架构与开源方法相结合,aiOla 正在推动 ASR 系统的功能向前发展,使其更快、更高效。 Whisper-Medusa 的潜在应用非常广泛,有望在各个领域得到改进,并为更先进、响应更灵敏的人工智能系统铺平道路。

Check out the Model and GitHub. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter.

查看模型和 GitHub。这项研究的所有功劳都归功于该项目的研究人员。另外,不要忘记在 Twitter 上关注我们并加入我们的 Telegram 频道和 LinkedIn 群组。如果您喜欢我们的工作,您一定会喜欢我们的时事通讯。

Don’t Forget to join our 47k+ ML SubReddit

不要忘记加入我们 47k+ ML SubReddit

Find Upcoming AI Webinars here

在此处查找即将举行的人工智能网络研讨会

新闻来源:www.marktechpost.com

免责声明:info@kdj.com

所提供的信息并非交易建议。根据本文提供的信息进行的任何投资,kdj.com不承担任何责任。加密货币具有高波动性,强烈建议您深入研究后,谨慎投资!

如您认为本网站上使用的内容侵犯了您的版权,请立即联系我们(info@kdj.com),我们将及时删除。

2024年11月23日 发表的其他文章