|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
以色列人工智慧新創公司 aiOla 推出了 Whisper-Medusa,在語音辨識領域實現了突破性創新。這個新模型基於 OpenAI 的 Whisper 構建,處理速度顯著提高了 50%,顯著推進了自動語音辨識 (ASR)。
Israeli AI startup aiOla has unveiled a groundbreaking innovation in speech recognition with the launch of Whisper-Medusa. This new model, which builds upon OpenAI’s Whisper, achieves a remarkable 50% increase in processing speed, significantly advancing automatic speech recognition (ASR).
以色列人工智慧新創公司 aiOla 推出了 Whisper-Medusa,在語音辨識領域實現了突破性創新。這個新模型基於 OpenAI 的 Whisper 構建,處理速度顯著提高了 50%,顯著推進了自動語音辨識 (ASR)。
aiOla's Whisper-Medusa incorporates a novel “multi-head attention” architecture that allows for the simultaneous prediction of multiple tokens. This development promises to revolutionize how AI systems translate and understand speech.
aiOla 的 Whisper-Medusa 採用新穎的「多頭注意力」架構,允許同時預測多個代幣。這項發展有望徹底改變人工智慧系統翻譯和理解語音的方式。
The introduction of Whisper-Medusa represents a significant leap forward from the widely used Whisper model developed by OpenAI. While Whisper has set the standard in the industry with its ability to process complex speech, including various languages and accents, in near real-time, Whisper-Medusa takes this capability a step further.
Whisper-Medusa 的推出代表了 OpenAI 開發的廣泛使用的 Whisper 模型的重大飛躍。雖然 Whisper 以其近乎即時處理複雜語音(包括各種語言和口音)的能力樹立了行業標準,但 Whisper-Medusa 在此能力上又向前邁進了一步。
The key to this enhancement lies in its multi-head attention mechanism; this enables the model to predict ten tokens at each pass instead of the standard one. This architectural change results in a 50% increase in speech prediction speed and generation runtime without compromising accuracy.
這項增強的關鍵在於其多頭注意力機制;這使得模型能夠在每次傳遞時預測十個標記,而不是標準的標記。這項架構變化使語音預測速度和產生運行時間提高了 50%,而不會影響準確度。
aiOla emphasized the importance of releasing Whisper-Medusa as an open-source solution. By doing so, aiOla aims to foster innovation and collaboration within the AI community, encouraging developers and researchers to contribute to and build upon their work. This open-source approach will lead to further speed improvements and refinements, benefiting various applications across various sectors such as healthcare, fintech, and multimodal AI systems.
aiOla 強調了發布 Whisper-Medusa 作為開源解決方案的重要性。透過這樣做,aiOla 旨在促進人工智慧社群內的創新和協作,鼓勵開發人員和研究人員為他們的工作做出貢獻並繼續發展。這種開源方法將進一步提高速度和完善,使醫療保健、金融科技和多模式人工智慧系統等各領域的各種應用受益。
The unique capabilities of Whisper-Medusa are particularly significant in the context of compound AI systems, which aim to understand & respond to user queries in almost real-time. Whisper-Medusa’s enhanced speed and efficiency make it a valuable asset when quick and accurate speech-to-text conversion is crucial. This is especially relevant in conversational AI applications, where real-time responses can greatly enhance user experience and productivity.
Whisper-Medusa 的獨特功能在複合人工智慧系統的背景下尤其重要,該系統旨在幾乎即時地理解和回應用戶查詢。當快速、準確的語音轉換至關重要時,Whisper-Medusa 增強的速度和效率使其成為寶貴的資產。這在對話式人工智慧應用程式中尤其重要,其中即時回應可以極大地增強用戶體驗和生產力。
The development process of Whisper-Medusa involved modifying Whisper’s architecture to incorporate the multi-head attention mechanism. This approach allows the model to jointly attend to information from different representation subspaces at other positions, using multiple “attention heads” in parallel. This innovative technique not only speeds up the prediction process but also maintains the high level of accuracy that Whisper is known for. They pointed out that improving the speed and latency of large language models (LLMs) is easier than ASR systems due to the complexity of processing continuous audio signals and handling noise or accents. However, aiOla’s novel approach has successfully addressed these challenges, resulting in a model nearly doubling the prediction speed.
Whisper-Medusa 的開發過程涉及修改 Whisper 的架構以納入多頭注意力機制。這種方法允許模型並行使用多個「注意力頭」來共同關注來自其他位置的不同表示子空間的資訊。這項創新技術不僅加快了預測過程,也維持了 Whisper 聞名的高準確度。他們指出,由於處理連續音訊訊號和處理雜訊或口音的複雜性,提高大型語言模型 (LLM) 的速度和延遲比 ASR 系統更容易。然而,aiOla 的新穎方法成功地解決了這些挑戰,使模型的預測速度幾乎翻倍。
Training Whisper-Medusa involved a machine-learning approach called weak supervision. aiOla froze the main components of Whisper and used audio transcriptions generated by the model as labels to train additional token prediction modules. The initial version of Whisper-Medusa employs a 10-head model, with plans to expand to a 20-head version capable of predicting 20 tokens at a time. This scalability further enhances the model's speed and efficiency without compromising accuracy.
訓練 Whisper-Medusa 涉及一種稱為弱監督的機器學習方法。 aiOla 凍結了 Whisper 的主要組件,並使用模型產生的音訊轉錄作為標籤來訓練額外的令牌預測模組。 Whisper-Medusa 的初始版本採用 10 頭模型,計劃擴展到能夠一次預測 20 個令牌的 20 頭版本。這種可擴展性進一步提高了模型的速度和效率,同時又不影響準確性。
Whisper-Medusa has been tested on real enterprise data use cases to ensure its performance in real-world scenarios; the company is still exploring early access opportunities with potential partners. The ultimate goal is to enable faster turnaround times in speech applications, paving the way for real-time responses. Imagine a virtual assistant like Alexa recognizing and responding to commands in seconds, significantly enhancing user experience and productivity.
Whisper-Medusa已經在真實的企業資料用例上進行了測試,以確保其在真實場景中的效能;該公司仍在與潛在合作夥伴探索早期訪問機會。最終目標是在語音應用程式中實現更快的周轉時間,為即時回應鋪平道路。想像 Alexa 這樣的虛擬助理可以在幾秒鐘內識別並回應命令,從而顯著增強用戶體驗和生產力。
In conclusion, aiOla’s Whisper-Medusa is poised to impact speech recognition substantially. By combining innovative architecture with an open-source approach, aiOla is driving the capabilities of ASR systems forward, making them faster and more efficient. The potential applications of Whisper-Medusa are vast, promising improvements in various sectors and paving the way for more advanced and responsive AI systems.
總之,aiOla 的 Whisper-Medusa 有望對語音辨識產生重大影響。透過將創新架構與開源方法結合,aiOla 正在推動 ASR 系統的功能向前發展,使其更快、更有效率。 Whisper-Medusa 的潛在應用非常廣泛,預計將在各個領域得到改進,並為更先進、更靈敏的人工智慧系統鋪平道路。
Check out the Model and GitHub. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter.
查看模型和 GitHub。這項研究的所有功勞都歸功於該計畫的研究人員。另外,不要忘記在 Twitter 上關注我們並加入我們的 Telegram 頻道和 LinkedIn 群組。如果您喜歡我們的工作,您一定會喜歡我們的時事通訊。
Don’t Forget to join our 47k+ ML SubReddit
不要忘記加入我們 47k+ ML SubReddit
Find Upcoming AI Webinars here
在此處尋找即將舉行的人工智慧網路研討會
免責聲明:info@kdj.com
所提供的資訊並非交易建議。 kDJ.com對任何基於本文提供的資訊進行的投資不承擔任何責任。加密貨幣波動性較大,建議您充分研究後謹慎投資!
如果您認為本網站使用的內容侵犯了您的版權,請立即聯絡我們(info@kdj.com),我們將及時刪除。
-
- 以太幣 (ETH) 鯨魚拋售價值 2.24 億美元的代幣,引發對價格穩定性的擔憂
- 2024-11-23 11:10:02
- 在比特幣拋物線式飆升的推動下,加密貨幣市場目前正熱鬧非凡,更廣泛的資產類別也隨之誕生。
-
- 美國戰略比特幣儲備會是什麼樣子?
- 2024-11-23 11:05:21
- 比特幣價格飆升,希望唐納德·川普的第二任期能帶來更寬鬆的監管環境,甚至比特幣戰略儲備。
-
- Memecoin 季節覺醒
- 2024-11-23 11:05:01
- 隨著比特幣($BTC/USDT)測試六位數的水平,以及全球市場努力應對美元的復甦,迷因幣產業正在加速成為自己的焦點。
-
- 川普獲勝助推破紀錄月度比特幣逼近 10 萬美元
- 2024-11-23 10:25:02
- 唐納德·川普 (Donald Trump) 於 11 月 5 日贏得美國總統大選後,投資者信心重燃,推動了此次漲勢