bitcoin
bitcoin

$98154.62 USD 

5.25%

ethereum
ethereum

$3142.82 USD 

1.29%

tether
tether

$0.999944 USD 

-0.09%

solana
solana

$241.65 USD 

2.29%

bnb
bnb

$608.37 USD 

-0.77%

xrp
xrp

$1.12 USD 

0.26%

dogecoin
dogecoin

$0.383222 USD 

-1.31%

usd-coin
usd-coin

$0.999818 USD 

-0.01%

cardano
cardano

$0.791497 USD 

-5.08%

tron
tron

$0.198047 USD 

0.00%

shiba-inu
shiba-inu

$0.000024 USD 

-1.58%

toncoin
toncoin

$5.45 USD 

0.83%

avalanche
avalanche

$33.76 USD 

-3.35%

bitcoin-cash
bitcoin-cash

$521.61 USD 

18.43%

sui
sui

$3.40 USD 

-8.87%

加密貨幣新聞文章

人工智慧代理將繼續存在:適應或落後

2024/11/21 14:06

近年來,我們見證了Crypto for AI的成長,在加密領域生根發芽,並催生了「算力資產化」、「模型資產化」、「資料資產化」等多個新賽道,代表專案是ionet 、奧爾姆和撒哈拉。

人工智慧代理將繼續存在:適應或落後

Over the past year, we've seen a surge in interest in Crypto for AI, which has taken root within the broader Crypto domain and spawned several new tracks, including "computing power assetization," "model assetization," and "data assetization," with representative projects being ionet, Olm, and Sahara.

在過去的一年裡,我們看到人們對人工智慧加密貨幣的興趣激增,它已經在更廣泛的加密貨幣領域紮根,並催生了幾個新的賽道,包括“算力資產化”、“模型資產化」和「資料資產化」。 」 代表專案有 ionet、Olm、Sahara。

With Trump's victory, the crypto craze has once again picked up steam globally, while AI for Crypto is also on the rise, rapidly generating many new things that emerge from the collision of AI, AI Agents, and Crypto.

隨著川普的勝利,加密貨幣熱潮在全球再次掀起熱潮,而加密貨幣領域的人工智慧也在興起,人工智慧、人工智慧代理商和加密貨幣的碰撞迅速產生了許多新事物。

AI Agents issuing tokens

AI代理發行代幣

AI Agents posting and calling trades

人工智慧代理發布和調用交易

AI Agents managing DAOs and fund trades

管理 DAO 和基金交易的人工智慧代理

AI Agents trading autonomously

AI代理自主交易

To provide a rough overview, the development of AI Agents in the Crypto field currently has two paths:

粗略概括一下,目前加密領域AI Agent的發展有兩條路徑:

1. Top-down, developed by AI concept projects, which are more infrastructure-oriented. We will analyze this in detail in the next article describing the panorama of Web3 AI infrastructure.

1.由上而下,由AI概念專案開發,更加面向基礎設施。我們將在下一篇描述 Web3 AI 基礎架構全景的文章中對此進行詳細分析。

2. Bottom-up, led by the AI Meme craze, driven by independent developers.

2. 由下而上,由 AI Meme 熱潮引領,由獨立開發者推動。

This article mainly discusses the second path.

本文主要討論第二條路徑。

Table of Contents:

目錄:

1. OpenAI's official AI Agent is about to be released, which may trigger an AI Agent frenzy

1.OpenAI官方AI Agent即將發布,或將引發AI Agent熱潮

As a leader in AI, OpenAI has long divided the path to the ultimate form of AI, AGI (Artificial General Intelligence), into five stages:

身為人工智慧領域的領導者,OpenAI 早已將人工智慧的終極形態——AGI(通用人工智慧)之路劃分為五個階段:

Basic AI (Emerging AGI): The initial stage of AI development, referring to AI capable of basic conversation and information processing, such as ChatGPT. It relies heavily on pre-trained datasets, and the AI's "IQ" (understanding and reasoning ability) is very limited;

基礎AI(Emerging AGI):人工智慧發展的初級階段,指能夠進行基本對話和資訊處理的AI,例如ChatGPT。它嚴重依賴預先訓練的資料集,AI的「IQ」(理解和推理能力)非常有限;

Reasoners: An advanced version of basic AI, capable of advanced logical reasoning and solving complex problems;

Reasoners:基礎AI的進階版本,能夠進行高階邏輯推理並解決複雜問題;

Agents: AI begins to have the ability to create content or perform actions without human input, or at least to execute tasks under human guidance. Most current AI Agents are still at a relatively early stage, mainly completing complex tasks that basic AI cannot achieve through planning, reasoning, and tool invocation;

代理:人工智慧開始具備在沒有人類輸入的情況下創建內容或執行操作的能力,或至少能夠在人類指導下執行任務。目前大多數AI Agent仍處於比較早期的階段,主要透過規劃、推理、工具呼叫來完成基礎AI無法實現的複雜任務;

Innovators: AI at this stage can not only solve existing problems but also conduct independent research and development, innovating and evolving through learning, forming a virtuous cycle, and getting closer to humans;

創新者:現階段的AI不僅可以解決現有問題,還可以進行自主研發,透過學習創新進化,形成良性循環,更接近人類;

Organizations: The final stage of AGI, where such AI systems can intelligently allocate tasks, work collaboratively, and complete complex tasks, similar to a team or organization, achieving a 1+1 greater than 2 effect.

組織:AGI的最後階段,這樣的AI系統可以智慧分配任務,協同工作,完成複雜的任務,類似團隊或組織,達到1+1大於2的效果。

If ChatGPT is at the first stage mentioned above, then the recently launched reasoning model o1 can certainly be classified into the second stage. The o1 model performs almost at the level of a PhD student in handling complex subjects like materialized biology. In the field of mathematics, it achieved an astonishing 83% accuracy rate in the International Mathematical Olympiad (IMO) exam, while GPT-4o could only correctly solve 13% of the problems.

如果說ChatGPT屬於上述第一階段,那麼最近推出的推理模型o1當然可以屬於第二階段。在處理物化生物學等複雜學科時,o1 模型的表現幾乎相當於博士生的程度。在數學領域,它在國際數學奧林匹克(IMO)考試中取得了驚人的83%的正確率,而GPT-4o只能正確解決13%的問題。

However, while users' attention is still focused on second-stage models like o1, OpenAI has quietly extended its "tentacles" into the third stage: Agents. OpenAI is positioning AI Agents as the next "trump card," as the Next Big Thing, steadily moving forward with a clear release date set for 2025.

然而,當使用者的注意力還集中在o1這樣的第二階段模型時,OpenAI已經悄悄地將其「觸角」伸向了第三階段:Agents。 OpenAI 將 AI Agent 定位為下一張“王牌”,即“下一件大事”,並穩步向前推進,並確定了 2025 年的明確發布日期。

"Agents will be the next major breakthrough" ------ OpenAI CEO Sam Altman

「智能體將是下一個重大突破」 ------ OpenAI CEO Sam Altman

"Letting GPT autonomously execute tasks will be a major focus next year" ------ OpenAI CPO Kevin Weil

「讓GPT自主執行任務將是明年的一大焦點」 ------ OpenAI CPO Kevin Weil

Next year, AI Agents will become the focal point of competition among various AI giants, with OpenAI facing strong competitors, including Anthropic's Computer Use and Google's upcoming AI Agent named Jarvis, set to launch in December.

明年,AI Agent將成為各AI巨頭競爭的焦點,OpenAI面臨強大的競爭對手,包括Anthropic的Computer Use和Google即將於12月推出的名為Jarvis的AI Agent。

Recently, Bloomberg reported that OpenAI plans to release an AI Agent tool named Operator in January, capable of autonomously completing tasks on a computer under user instructions, such as writing code and booking itineraries.

近日,彭博社報道稱,OpenAI 計劃於 1 月發布一款名為 Operator 的 AI Agent 工具,能夠根據用戶指示在電腦上自主完成任務,例如編寫程式碼、預訂行程等。

It seems that the AI Agent framework Swarm, launched by OpenAI a month ago, is just an appetizer, with numerous real-world work and life use cases waiting for OpenAI and developers to implement. For example,

看來,OpenAI一個月前推出的AI Agent框架Swarm只是一個開胃菜,還有大量現實世界的工作和生活用例等待OpenAI和開發者去實現。例如,

2. AI Agent + Crypto, where to start?

2. AI Agent + Crypto,從哪裡開始?

The productivity revolution brought by AI Agents will gradually permeate various industries, leading to higher efficiency, better services, and personalized experiences.

AI Agent帶來的生產力革命將逐漸滲透到各個產業,帶來更高的效率、更好的服務和個人化的體驗。

In the crypto world, it seems that the current Crypto is inseparable from finance, so the most natural starting point for on-chain AI Agents is DeFi, but first, AI must gain financial autonomy. Traditionally, AI faces many restrictions in financial activities, such as being unable to open bank accounts and lacking legal identity. In the Crypto world, registering an on-chain identity and wallet for AI Agents is a very natural thing. We can pre-install crypto wallets and smart contracts, set spending limits, execute transactions, and manage funds, granting AI Agents financial autonomy.

在加密世界裡,似乎現在的加密與金融密不可分,所以鏈上AI代理最自然的起點就是DeFi,但首先AI必須獲得金融自主權。傳統上,人工智慧在金融活動中面臨許多限制,例如無法開設銀行帳戶、缺乏合法身分等。在加密世界中,為人工智慧代理註冊鏈上身分和錢包是一件很自然的事。我們可以預先安裝加密錢包和智能合約、設定支出限額、執行交易和管理資金,從而賦予人工智慧代理財務自主權。

When AI Agents possess both autonomous decision-making capabilities and financial autonomy, the question of "what can they do" suddenly opens

當AI智能體同時具備自主決策能力和財務自主權時,「他們能做什麼」的問題突然出現

新聞來源:www.chaincatcher.com

免責聲明:info@kdj.com

所提供的資訊並非交易建議。 kDJ.com對任何基於本文提供的資訊進行的投資不承擔任何責任。加密貨幣波動性較大,建議您充分研究後謹慎投資!

如果您認為本網站使用的內容侵犯了您的版權,請立即聯絡我們(info@kdj.com),我們將及時刪除。

2024年11月21日 其他文章發表於