bitcoin
bitcoin

$94461.473786 USD

0.40%

ethereum
ethereum

$3412.822110 USD

5.80%

tether
tether

$0.999003 USD

-0.03%

xrp
xrp

$2.251947 USD

4.00%

bnb
bnb

$690.311342 USD

7.77%

solana
solana

$189.893597 USD

6.80%

dogecoin
dogecoin

$0.322993 USD

5.52%

usd-coin
usd-coin

$1.000244 USD

0.00%

cardano
cardano

$0.918134 USD

5.11%

tron
tron

$0.252865 USD

4.33%

avalanche
avalanche

$38.725297 USD

8.07%

chainlink
chainlink

$24.196299 USD

11.56%

toncoin
toncoin

$5.609993 USD

5.07%

sui
sui

$4.695513 USD

10.32%

shiba-inu
shiba-inu

$0.000022 USD

6.22%

加密货币视频

论文精读:比特币区块链中本聪其实是一篇论文?说了些什么?

2024/04/15 14:24 Ph.D. Vlog

欢迎来到我的频道,在这里我会讲解机器学习、深度学习最经典或者最前沿的模型,同时我还会讲在美国如何生活,如何找工作,如何刷LeetCode,如何快速融入社会。喜欢记得订阅、点赞哦!如果你有什么想要听的,在下面留言吧!

目前的讲解清单:
线性回归 (LR)、逻辑回归 (LogR)、多项式回归 (PR)、Lasso 回归、Ridge 回归、弹性网络 (Elastic Net)、决策树 (DT)、随机森林 (RF)、梯度提升树 (GBT)、XGBoost、LightGBM、CatBoost、支持向量机 (SVM)、朴素贝叶斯 (NB)、K 最近邻 (KNN)、主成分分析 (PCA)、独立成分分析 (ICA)、线性判别分析 (LDA)、t-分布邻近嵌入 (t-SNE)、高斯混合模型 (GMM)、聚类分析 (CA)、K 均值聚类 (K-means)、DBSCAN、HDBSCAN、层次聚类 (HC)、GAN (生成对抗网络)、CGAN、DCGAN、WGAN (Wasserstein GAN)、StyleGAN、CycleGAN、VAE (变分自编码器)、GPT (生成式预训练模型)、BERT、Transformer、LSTM (长短期记忆网络)、GRU (门控循环单元)、RNN (循环神经网络)、CNN (卷积神经网络)、AlexNet、VGG、GoogLeNet、ResNet、MobileNet、EfficientNet、Inception、DeepDream、深度信念网络 (DBN)、自动编码器 (AE)、强化学习 (RL)、Q-learning、SARSA、DDPG、A3C、SAC、时序差分学习 (TD)、Actor-Critic、对抗训练 (Adversarial Training)、梯度下降 (GD)、随机梯度下降 (SGD)、批量梯度下降 (BGD)、Adam、RMSprop、AdaGrad、AdaDelta、Nadam、交叉熵损失函数 (Cross-Entropy Loss)、均方误差损失函数 (Mean Squared Error Loss)、KL 散度损失函数 (KL Divergence Loss)、Hinge 损失函数、感知器 (Perceptron)、RBF 神经网络、Hopfield 网络、Boltzmann 机、深度强化学习 (DRL)、自监督学习 (Self-supervised Learning)、迁移学习 (Transfer Learning)、泛化对抗网络 (GAN)、对抗生成网络 (GAN)、训练生成网络 (TGAN)、CycleGAN、深度学习生成模型 (DLGM)、自动编码器生成对抗网络 (AEGAN)、分布式自编码器 (DAE)、网络激活优化器 (NAO)、自编码器 (Autoencoder)、VQ-VAE、LSTM-VAE、卷积自编码器 (CAE)、GAN 自编码器 (GANAE)、U-Net、深度 Q 网络 (DQN)、双重 DQN (DDQN)、优先回放 DQN (Prioritized Experience Replay DQN)、多智能体 DQN (Multi-agent DQN)、深度确定性策略梯度 (DDPG)、感知器 (Perceptron)、稀疏自编码器 (SAE)、稀疏表示分类 (SRC)、深度置信网络 (DBN)、支持向量机 (SVM)、集成学习 (Ensemble Learning)、随机森林 (Random Forest)、极限梯度提升树 (XGBoost)、AdaBoost、梯度提升机 (Gradient Boosting Machine)、Stacking、贝叶斯优化器 (Bayesian Optimization)、贝叶斯网络 (Bayesian Network)、EM 算法 (Expectation-Maximization Algorithm)、高斯过程 (Gaussian Process)、马尔科夫链蒙特卡洛 (MCMC)、强化学习 (Reinforcement Learning)、无监督学习 (Unsupervised Learning)、半监督学习 (Semi-supervised Learning)、监督学习 (Supervised Learning)、迁移学习 (Transfer Learning)、维数约简 (Dimensionality Reduction)、特征选择 (Feature Selection)、特征提取 (Feature Extraction)、正则化 (Regularization)、标准化 (Normalization)、聚类 (Clustering)、分类 (Classification)、回归 (Regression)、降维 (Dimensionality Reduction)、特征映射 (Feature Mapping)、神经网络 (Neural Network)、神经元 (Neuron)、激活函数 (Activation Function)、损失函数 (Loss Function)、优化器 (Optimizer)、学习率 (Learning Rate)、批次大小 (Batch Size)、迭代次数 (Epoch)、超参数 (Hyperparameter)、模型评估 (Model Evaluation)、交叉验证 (Cross Validation)、混淆矩阵 (Confusion Matrix)、ROC 曲线 (ROC Curve)、AUC 值 (AUC Value)、精确度 (Precision)、召回率 (Recall)、F1 分数 (F1 Score)、模型解释 (Model Interpretability)、特征重要性 (Feature Importance)、局部解释 (Local Explanation)、全局解释 (Global Explanation)、机器学习管道 (Machine Learning Pipeline)、一键生成模型 (AutoML)、超参数优化 (Hyperparameter Tuning)、FFT、拉普拉斯变换、z变换、傅里叶变换、短时傅里叶变换 (STFT)、IIR、FIR、卡尔曼滤波、DIP算法、小波变换
视频来源:Youtube

免责声明:info@kdj.com

所提供的信息并非交易建议。根据本文提供的信息进行的任何投资,kdj.com不承担任何责任。加密货币具有高波动性,强烈建议您深入研究后,谨慎投资!

如您认为本网站上使用的内容侵犯了您的版权,请立即联系我们(info@kdj.com),我们将及时删除。

2024年12月24日 发表的其他视频