市值: $2.6907T 1.910%
體積(24小時): $106.0035B -4.170%
  • 市值: $2.6907T 1.910%
  • 體積(24小時): $106.0035B -4.170%
  • 恐懼與貪婪指數:
  • 市值: $2.6907T 1.910%
加密
主題
加密植物
資訊
加密術
影片
頭號新聞
加密
主題
加密植物
資訊
加密術
影片
bitcoin
bitcoin

$82951.790245 USD

-0.70%

ethereum
ethereum

$1791.465527 USD

-1.83%

tether
tether

$0.999717 USD

-0.01%

xrp
xrp

$2.055970 USD

0.14%

bnb
bnb

$593.238692 USD

-1.32%

usd-coin
usd-coin

$1.000032 USD

0.02%

solana
solana

$115.381354 USD

-4.13%

dogecoin
dogecoin

$0.161732 USD

-2.67%

cardano
cardano

$0.649656 USD

-0.44%

tron
tron

$0.239261 USD

1.04%

unus-sed-leo
unus-sed-leo

$9.561241 USD

1.74%

toncoin
toncoin

$3.530703 USD

-6.73%

chainlink
chainlink

$12.739766 USD

-3.87%

stellar
stellar

$0.259841 USD

-2.48%

avalanche
avalanche

$18.093210 USD

-3.52%

加密貨幣新聞文章

在AI和自然語言處理的背景下,什麼是“代幣”?

2025/04/04 05:08

在人工智能(AI)的背景下,特別是自然語言處理(NLP)模型,例如大型語言模型(LLMS),例如GPT

在AI和自然語言處理的背景下,什麼是“代幣”?

The term "Token" in the context of Artificial Intelligence (AI) and Natural Language Processing (NLP) refers to the atomic units of text that are processed by AI models, especially those used in large language models (LLMs) such as GPT. These tokens can represent words, subwords, characters, or punctuation marks, depending on the AI model's design and the tokenization method used.

在人工智能(AI)和自然語言處理(NLP)的背景下,“令牌”一詞是指由AI模型處理的文本原子單位,尤其是在大型語言模型(LLMS)(例如GPT)中使用的文本單位。這些令牌可以表示單詞,子字,字符或標點符號,具體取決於AI模型的設計和使用的令牌化方法。

The process of tokenization is crucial in AI, as it breaks down text into smaller parts, making it easier for models to understand and process. Each of these tokens represents a unit that the AI model processes and uses to understand, predict, and generate language.

令牌化過程在AI中至關重要,因為它將文本分解為較小的部分,從而使模型更容易理解和處理。這些令牌中的每一個都代表AI模型來處理,預測和生成語言的單元。

Examples of Tokens in AI:

AI中的令牌示例:

Word-level Tokens: Many models treat each word as a separate token. In a sentence like "AI is transforming industries," each word—'AI,' 'is,' 'transforming,' 'industries’—would be treated as a token.

單詞級令牌:許多模型將每個單詞視為一個單獨的令牌。在像“ AI”這樣的句子中,每個單詞 - 'ai,''is,'''''''行業'將被視為令牌。

Subword Tokens: Some models use subwords to handle rare or unknown words more effectively. For instance, the word “unbelievable” might be tokenized as “un,” “believe,” and “able.” This method allows the AI model to generalize better to new or unseen words.

子字代幣:某些模型使用子字來更有效地處理稀有或未知單詞。例如,“令人難以置信的”一詞可能被稱為“聯合國”,“相信”和“能夠”。此方法允許AI模型更好地概括為新的或看不見的單詞。

Character Tokens: In some cases, every character is treated as a token. This is useful in applications where the exact spelling of words matters, or in models that need to handle many different languages or special symbols.

字符令牌:在某些情況下,每個角色都被視為令牌。這在單詞的確切拼寫或需要處理許多不同語言或特殊符號的模型中很有用。

Punctuation and Special Tokens: Tokens also include punctuation marks like commas, periods, and question marks. Additionally, there are special tokens used for specific purposes in models, such as for "start of sentence" or for "end of sentence."

標點符號和特殊令牌:令牌還包括標點符號,例如逗號,時期和問號。此外,在模型中有特殊的代幣用於特定目的,例如“句子開始”或“句子結尾”。

Benefits of Tokens in AI:

代幣在AI中的好處:

Efficient Text Processing: Tokens help break down complex sentences into smaller, more manageable parts. This enables AI models to handle language processing tasks with more precision and efficiency.

有效的文本處理:令牌有助於將復雜的句子分解為較小,更易於管理的零件。這使AI模型能夠以更精確和效率處理語言處理任務。

Handling Rare Words: By using subword tokenization, AI models can generalize better and deal with rare or complex words that the model hasn’t seen during training. For example, the word "unfathomable" can be broken into smaller, recognizable subwords, allowing the model to interpret it correctly.

處理稀有詞:通過使用子字代幣化,AI模型可以更好地推廣並處理該模型在訓練過程中未見的稀有或複雜詞。例如,“不可思議的”一詞可以分解為較小的可識別子字,從而使模型正確解釋。

Improved Model Performance: Tokenization allows models to focus on the relationships between small units of language, improving their understanding of syntax and semantics. This leads to better results in tasks like translation, summarization, or text generation.

改進的模型性能:令牌化允許模型專注於語言小單位之間的關係,從而提高他們對語法和語義的理解。這會更好地完成翻譯,摘要或文本生成等任務。

Language Agnostic: Since tokenization can happen at the character or subword level, it can be applied to many different languages without needing a separate model for each language. This makes AI models more versatile and widely applicable across different linguistic contexts.

語言不可知論:由於令牌化可以在字符或子字級別上發生,因此可以將其應用於許多不同的語言,而無需為每種語言一個單獨的模型。這使AI模型在不同的語言環境中更廣泛和廣泛適用。

Simplifies Model Training: Working with tokens makes it easier for AI models to be trained on large datasets. Instead of processing entire paragraphs or sentences at once, AI models deal with smaller chunks, which speeds up the training process and reduces computational complexity.

簡化模型培訓:使用令牌可以使AI模型更容易在大型數據集上進行培訓。 AI模型沒有立即處理整個段落或句子,而是處理較小的塊,這加快了訓練過程並降低了計算複雜性。

Limitations of Tokens in AI:

AI中令牌的局限性:

Context Loss: Tokenization can sometimes lead to the loss of contextual information. When breaking down a sentence into tokens, some of the nuanced meanings or relationships between words may be lost, especially in word-level or character-level tokenization.

上下文損失:令牌化有時會導致上下文信息的丟失。當將句子分解為令牌時,單詞之間的某些細微含義或關係可能會丟失,尤其是在單詞級或字符級別的令牌中。

Ambiguity: Words or phrases with multiple meanings may not always be interpreted correctly, especially if the tokenization method doesn’t capture the full context. For example, the word “bank” could refer to a financial institution or the side of a river, and without sufficient context, the AI may misinterpret its meaning.

歧義:具有多種含義的單詞或短語可能並不總是正確解釋,尤其是如果令牌化方法未捕獲完整的上下文。例如,“銀行”一詞可以指金融機構或河流的一側,而沒有足夠的背景,AI可能會誤解其含義。

Token Limit: Most AI models have a limit on the number of tokens they can process at once. This can be problematic for long documents or conversations.

令牌限制:大多數AI模型都對他們可以一次處理的令牌數量有限制。對於長文檔或對話,這可能是有問題的。

Inefficiency with Rare Languages: For languages that use complex characters or symbols, character-level tokenization can lead to an explosion in the number of tokens, increasing computational costs and reducing efficiency.

稀有語言的效率低下:對於使用複雜字符或符號的語言,字符級令牌化可能會導致令牌數量的爆炸,從而提高計算成本並降低效率。

Complexity in Preprocessing: Tokenizing text for AI models often requires complex preprocessing, which can introduce errors or inconsistencies if not done correctly. This can affect the brightness and accuracy of the model’s outputs.

預處理的複雜性:用於AI模型的標記文本通常需要復雜的預處理,如果無法正確完成,則可能引入錯誤或矛盾。這可能會影響模型輸出的亮度和準確性。

Summary of Tokens:

代幣摘要:

In summary, tokens are the fundamental units of text that AI models, particularly in the field of natural language processing, use to understand and generate language.

總而言之,令牌是AI模型的基本單元,尤其是在自然語言處理領域,用於理解和生成語言。

These tokens can represent words, subwords, characters, or symbols, depending on how the text is broken down for analysis.

這些令牌可以代表單詞,子字,字符或符號,具體取決於文本分解以進行分析。

Tokenization offers numerous benefits, such as improving AI model efficiency, allowing better handling of rare or unknown words, and facilitating multilingual applications.

令牌化提供了許多好處,例如提高AI模型效率,可以更好地處理稀有單詞或未知單詞,並促進多語言應用。

However, it also has limitations, such as the potential for context loss, token limit constraints, and increased complexity in preprocessing.

但是,它還具有局限性,例如上下文丟失,令牌限制的潛力以及預處理的複雜性增加。

免責聲明:info@kdj.com

所提供的資訊並非交易建議。 kDJ.com對任何基於本文提供的資訊進行的投資不承擔任何責任。加密貨幣波動性較大,建議您充分研究後謹慎投資!

如果您認為本網站使用的內容侵犯了您的版權,請立即聯絡我們(info@kdj.com),我們將及時刪除。

2025年04月05日 其他文章發表於