bitcoin
bitcoin

$98561.25 USD 

-0.22%

ethereum
ethereum

$3330.08 USD 

-0.04%

tether
tether

$1.00 USD 

0.05%

solana
solana

$254.18 USD 

-1.59%

bnb
bnb

$641.31 USD 

0.99%

xrp
xrp

$1.56 USD 

13.47%

dogecoin
dogecoin

$0.423747 USD 

7.39%

usd-coin
usd-coin

$0.999808 USD 

0.03%

cardano
cardano

$1.08 USD 

22.88%

tron
tron

$0.206020 USD 

2.72%

avalanche
avalanche

$43.22 USD 

18.69%

shiba-inu
shiba-inu

$0.000027 USD 

8.19%

toncoin
toncoin

$5.50 USD 

-0.89%

stellar
stellar

$0.433590 USD 

54.77%

polkadot-new
polkadot-new

$7.02 USD 

13.75%

加密貨幣新聞文章

Dynex:神經形態量子運算雲解決人工智慧、量子運算和研究中的現實問題

2024/10/08 15:00

人們仍在嘗試建立更好的區塊鏈並定制他們的網路以解決更多最新的計算挑戰。其中之一就是 Dynex

Dynex:神經形態量子運算雲解決人工智慧、量子運算和研究中的現實問題

Dynex is a blockchain that was launched in 2022. It is aiming to solve “real-world problems” in AI, quantum computing, and research. It is described by its developers as a “distinctive, adaptable blockchain system” and “the world’s only accessible neuromorphic quantum computing cloud.” It harnesses the parallel processing capacity of its GPU-based mining network.

Dynex 是於 2022 年推出的區塊鏈。它被其開發人員描述為「獨特的、適應性強的區塊鏈系統」和「世界上唯一可訪問的神經形態量子計算雲」。它利用基於 GPU 的挖礦網路的平行處理能力。

A neuromorphic network, Mapp shares with CoinGeek Backstage, would process information along the same principles as the human brain.

Mapp 與 CoinGeek Backstage 共享的神經形態網路將按照與人腦相同的原理處理資訊。

“A neuromorphic network, in the simplest terms, is emulating the same way the human brain works. So when you’re looking at me, you’re seeing me, you’re hearing something around, you’re smelling—that is all parallel processing in your own brain. And we can simulate the same way that works on our chain,” he says.

「用最簡單的術語來說,神經形態網路正在模仿人類大腦的工作方式。因此,當你看著我時,你正在看到我,你正在聽到周圍的聲音,你正在聞到——這些都是你自己大腦中的平行處理。我們可以模擬在我們的鏈上運行的相同方式,」他說。

Dynex processes transactions using a custom algorithm called “DynexSolve,” which combines regular proof-of-work (PoW) and a new concept Mapp calls the “proof of useful work” (PoUW) mechanism. The idea of PoUW is to make sure a portion of the computational resources of Dynex’s mining network are dedicated to solving practical problems. Those would include real-world scenarios in scientific research, AI training, pharmaceuticals, logistics, and financial modeling.

Dynex 使用名為「DynexSolve」的自訂演算法處理交易,該演算法結合了常規工作量證明 (PoW) 和 Mapp 稱為「有用工作量證明」(PoUW) 機制的新概念。 PoUW 的想法是確保 Dynex 挖礦網路的部分運算資源專用於解決實際問題。這些將包括科學研究、人工智慧培訓、製藥、物流和金融建模中的現實場景。

Its native token is also called Dynex or DNX. Miners receive DNX as a block reward for securing the network just as they do on other PoW blockchains, but also receive an additional subsidy for the “meaningful” computation described above. Mapp says that DynexSolve is a way of combining the two into one processing algorithm.

其原生代幣也稱為 Dynex 或 DNX。礦工會像在其他 PoW 區塊鏈上一樣獲得 DNX 作為保護網路的區塊獎勵,而且還會因上述「有意義」的計算而獲得額外補貼。 Mapp 表示,DynexSolve 是一種將兩者結合為一個處理演算法的方法。

He adds that one pharmaceutical research application Dynex is looking at involves protein folding. A pharmaceutical company noticed they’d previously done RNA folding and RNA sequencing.

他補充說,Dynex 正在研究的一項藥物研究應用涉及蛋白質折疊。一家製藥公司注意到他們之前做過 RNA 折疊和 RNA 測序。

“I think we’re up to around 250 amino acid chains. The human body has around 300 in a protein string, so we’re almost fully at human level of protein folding right now. We suspect a couple more months, and we’ll have that fully nailed, and that’s going to open the door to all kinds of new research,” he explains.

「我認為我們有大約 250 條氨基酸鏈。人體的蛋白質鏈中約有 300 個,因此我們現在幾乎完全達到人類層面的蛋白質折疊。我們懷疑再過幾個月,我們就會完全解決這個問題,這將為各種新研究打開大門,」他解釋道。

LLMs (large language models) are a popular topic in technology, especially with ChatGPT and other similar projects gaining mainstream attention rapidly. Dynex LLM is the project’s home-grown model, and Mapp describes it as a “large behavioral model” based more on how a human mind thinks and learns.

LLM(大型語言模型)是科技領域的熱門話題,尤其是 ChatGPT 和其他類似專案迅速獲得主流關注。 Dynex LLM 是該專案的本土模型,Mapp 將其描述為更多基於人類思維和學習方式的「大型行為模型」。

A lot of Dynex’s work is still in the experimental realm, and its neuromorphic quantum computing concept utilizes ion drifting of electrons, which is different from superconducting qubit-based quantum computing in that it uses “memresistive elements that can quickly react to changes, helping the system swiftly find the best solutions.” It’s an alternative way to potentially achieve quantum computing advantages using the movement of ions within memresistors to change a device’s state.

Dynex 的許多工作仍處於實驗領域,其神經擬態量子運算概念利用了電子的離子漂移,這與基於超導量子位的量子運算不同,它使用「可以快速對變化做出反應的憶阻元件,幫助系統迅速找到最佳解決方案。這是利用憶阻器內離子的移動來改變設備狀態來潛在實現量子運算優勢的另一種方法。

This is just one computer science problem Dynex hopes to solve, and the team hopes for more breakthroughs.

這只是 Dynex 希望解決的電腦科學問題,團隊希望能有更多突破。

新聞來源:coingeek.com

免責聲明:info@kdj.com

所提供的資訊並非交易建議。 kDJ.com對任何基於本文提供的資訊進行的投資不承擔任何責任。加密貨幣波動性較大,建議您充分研究後謹慎投資!

如果您認為本網站使用的內容侵犯了您的版權,請立即聯絡我們(info@kdj.com),我們將及時刪除。

2024年11月23日 其他文章發表於