市值: $3.3389T 1.240%
體積(24小時): $79.4929B 20.020%
  • 市值: $3.3389T 1.240%
  • 體積(24小時): $79.4929B 20.020%
  • 恐懼與貪婪指數:
  • 市值: $3.3389T 1.240%
加密
主題
加密植物
資訊
加密術
影片
頭號新聞
加密
主題
加密植物
資訊
加密術
影片
bitcoin
bitcoin

$108530.002893 USD

1.12%

ethereum
ethereum

$2501.495543 USD

2.83%

tether
tether

$1.000245 USD

-0.01%

xrp
xrp

$2.198131 USD

0.43%

bnb
bnb

$654.360076 USD

0.87%

solana
solana

$152.192030 USD

1.55%

usd-coin
usd-coin

$0.999839 USD

0.00%

tron
tron

$0.276594 USD

0.49%

dogecoin
dogecoin

$0.167580 USD

2.68%

cardano
cardano

$0.568515 USD

0.60%

hyperliquid
hyperliquid

$40.700758 USD

7.87%

bitcoin-cash
bitcoin-cash

$500.972465 USD

1.64%

sui
sui

$2.847545 USD

2.13%

chainlink
chainlink

$13.518965 USD

1.41%

unus-sed-leo
unus-sed-leo

$9.163651 USD

0.47%

加密貨幣新聞文章

高階即時工程:思想鏈 (CoT)

2024/12/23 22:06

比較不同的推理技術

高階即時工程:思想鏈 (CoT)

Chain of Thought (CoT) techniques have been around for a while now, and they're essentially a form of advanced prompt engineering. CoT aims to get large language models (LLMs) to perform reasoning steps by explicitly showing them the chain of thought that leads to the answer. This helps the models understand the problem better and makes their reasoning more transparent.

思想鏈 (CoT) 技術已經存在一段時間了,它們本質上是高階提示工程的一種形式。 CoT 的目標是透過明確地向大型語言模型 (LLM) 展示導致答案的思維鏈來讓大型語言模型 (LLM) 執行推理步驟。這有助於模型更好地理解問題並使他們的推理更加透明。

There are several different CoT techniques, each with its own strengths and weaknesses. Some of the most common techniques include:

有多種不同的 CoT 技術,每種技術都有自己的優點和缺點。一些最常見的技術包括:

* **Natural language CoT:** This technique uses natural language to describe the chain of thought. For example, to solve a math problem, you might write out the steps of the calculation in English.

* **自然語言CoT:** 此技術使用自然語言來描述思想鏈。例如,要解決數學問題,您可以用英文寫出計算步驟。

* **Logical form CoT:** This technique uses a formal logical language to represent the chain of thought. This makes the reasoning more precise and easier to follow, but it can also be more difficult to create.

* **邏輯形式CoT:** 此技術使用形式邏輯語言來表示思想鏈。這使得推理更加精確且更容易遵循,但也可能更難創建。

* **Programmatic CoT:** This technique uses a programming language to represent the chain of thought. This is the most precise and efficient way to represent reasoning, but it also requires the most technical knowledge to create.

* **Programmatic CoT:** 這種技巧使用程式語言來表示思想鏈。這是最精確、最有效率的推理表達方式,但也需要最多的技術知識來創造。

The best CoT technique to use will depend on the specific task and the capabilities of the LLM. However, all CoT techniques can help LLMs to perform reasoning tasks more effectively and transparently.

使用的最佳 CoT 技術將取決於具體任務和法學碩士的能力。然而,所有 CoT 技術都可以幫助法學碩士更有效、更透明地執行推理任務。

Here's an example of how CoT can be used to solve a math problem:

以下是如何使用 CoT 解決數學問題的範例:

Without CoT, the LLM might simply be given the problem and asked to solve it. For example:

如果沒有 CoT,法學碩士可能只會被告知問題並要求解決它。例如:

```

````

Question: What is 123 + 456?

問題:123+456是多少?

Answer: 579

答案:579

```

````

With CoT, the LLM would be given a step-by-step guide on how to solve the problem. For example:

透過 CoT,法學碩士將獲得如何解決問題的逐步指南。例如:

```

````

Question: What is 123 + 456?

問題:123+456是多少?

Chain of Thought:

思路鏈:

1. Add the tens digits (2 + 5 = 7).

1. 將十位數相加 (2 + 5 = 7)。

2. Add the hundreds digits (1 + 4 = 5).

2. 將百位數字相加 (1 + 4 = 5)。

3. Add the results of steps 1 and 2 (7 + 5 = 12).

3. 將步驟 1 和 2 的結果相加 (7 + 5 = 12)。

4. Write down the carry digit (2).

4. 記下進位數字 (2)。

5. Add the ones digits (3 + 6 = 9).

5. 將個位數字相加 (3 + 6 = 9)。

6. Write down the sum of steps 4 and 5 (2 + 9 = 11).

6. 寫下步驟 4 和 5 的總和 (2 + 9 = 11)。

7. The final answer is the result of step 6 (11).

7. 最終答案是步驟6(11)的結果。

Answer: 579

答案:579

```

````

By showing the LLM the chain of thought, we can help it to understand the problem better and arrive at the correct answer more easily.

透過向LLM展示思路鏈,我們可以幫助其更好地理解問題,更容易得出正確的答案。

CoT techniques are a powerful tool for improving the performance of LLMs on reasoning tasks. By making the reasoning process more explicit and transparent, CoT helps the models to learn and generalize better.

CoT 技術是提升法學碩士推理任務表現的強大工具。透過使推理過程更加明確和透明,CoT 幫助模型更好地學習和泛化。

免責聲明:info@kdj.com

所提供的資訊並非交易建議。 kDJ.com對任何基於本文提供的資訊進行的投資不承擔任何責任。加密貨幣波動性較大,建議您充分研究後謹慎投資!

如果您認為本網站使用的內容侵犯了您的版權,請立即聯絡我們(info@kdj.com),我們將及時刪除。

2025年07月01日 其他文章發表於