時価総額: $2.6864T 0.700%
ボリューム(24時間): $45.2502B -1.750%
  • 時価総額: $2.6864T 0.700%
  • ボリューム(24時間): $45.2502B -1.750%
  • 恐怖と貪欲の指数:
  • 時価総額: $2.6864T 0.700%
暗号
トピック
暗号化
ニュース
暗号造園
動画
トップニュース
暗号
トピック
暗号化
ニュース
暗号造園
動画
bitcoin
bitcoin

$84893.487933 USD

0.08%

ethereum
ethereum

$1596.274407 USD

0.88%

tether
tether

$0.999636 USD

-0.03%

xrp
xrp

$2.081851 USD

1.38%

bnb
bnb

$591.474593 USD

0.28%

solana
solana

$138.094016 USD

2.28%

usd-coin
usd-coin

$0.999737 USD

-0.03%

dogecoin
dogecoin

$0.159043 USD

3.11%

tron
tron

$0.241190 USD

-1.77%

cardano
cardano

$0.633320 USD

3.41%

unus-sed-leo
unus-sed-leo

$9.224828 USD

-0.09%

chainlink
chainlink

$12.732104 USD

2.05%

avalanche
avalanche

$19.288047 USD

1.39%

toncoin
toncoin

$3.000551 USD

1.99%

stellar
stellar

$0.243091 USD

0.93%

暗号通貨のニュース記事

llama.cpp: Writing A Simple C++ Inference Program for GGUF LLM Models

2025/01/14 03:04

llama.cpp: Writing A Simple C++ Inference Program for GGUF LLM Models

This tutorial will guide you through the process of building a simple C++ program that performs inference on GGUF LLM models using the llama.cpp framework. We will cover the essential steps involved in loading the model, performing inference, and displaying the results. The code for this tutorial can be found here.

Prerequisites

To follow along with this tutorial, you will need the following:

A Linux-based operating system (native or WSL)

CMake installed

GNU/clang toolchain installed

Step 1: Setting Up the Project

Let's start by setting up our project. We will be building a C/C++ program that uses llama.cpp to perform inference on GGUF LLM models.

Create a new project directory, let's call it smol_chat.

Within the project directory, let's clone the llama.cpp repository into a subdirectory called externals. This will give us access to the llama.cpp source code and headers.

mkdir -p externals

cd externals

git clone https://github.com/georgigerganov/llama.cpp.git

cd ..

Step 2: Configuring CMake

Now, let's configure our project to use CMake. This will allow us to easily compile and link our C/C++ code with the llama.cpp library.

Create a CMakeLists.txt file in the project directory.

In the CMakeLists.txt file, add the following code:

cmake_minimum_required(VERSION 3.10)

project(smol_chat)

set(CMAKE_CXX_STANDARD 20)

set(CMAKE_CXX_STANDARD_REQUIRED ON)

add_executable(smol_chat main.cpp)

target_include_directories(smol_chat PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})

target_link_libraries(smol_chat llama.cpp)

This code specifies the minimum CMake version, sets the C++ standard and standard flag, adds an executable named smol_chat, includes headers from the current source directory, and links the llama.cpp shared library to our executable.

Step 3: Defining the LLM Interface

Next, let's define a C++ class that will handle the high-level interactions with the LLM. This class will abstract away the low-level llama.cpp function calls and provide a convenient interface for performing inference.

In the project directory, create a header file called LLMInference.h.

In LLMInference.h, declare the following class:

class LLMInference {

public:

LLMInference(const std::string& model_path);

~LLMInference();

void startCompletion(const std::string& query);

std::string completeNext();

private:

llama_model llama_model_;

llama_context llama_context_;

llama_sampler llama_sampler_;

std::vector _messages;

std::vector _formattedMessages;

std::vector _tokens;

llama_batch batch_;

};

This class has a public constructor that takes the path to the GGUF LLM model as an argument and a destructor that deallocates any dynamically-allocated objects. It also has two public member functions: startCompletion, which initiates the completion process for a given query, and completeNext, which fetches the next token in the LLM's response sequence.

Step 4: Implementing LLM Inference Functions

Now, let's define the implementation for the LLMInference class in a file called LLMInference.cpp.

In LLMInference.cpp, include the necessary headers and implement the class methods as follows:

#include "LLMInference.h"

#include "common.h"

#include

#include

#include

LLMInference::LLMInference(const std::string& model_path) {

llama_load_model_from_file(&llama_model_, model_path.c_str(), llama_model_default_params());

llama_new_context_with_model(&llama_context_, &llama_model_);

llama_sampler_init_temp(&llama_sampler_, 0.8f);

llama_sampler_init_min_p(&llama_sampler_, 0.0f);

}

LLMInference::~LLMInference() {

for (auto& msg : _messages) {

std::free(msg.content);

}

llama_free_model(&llama_model_);

llama_free_context(&llama_context_);

}

void LLMInference::startCompletion(const std::string& query)

免責事項:info@kdj.com

提供される情報は取引に関するアドバイスではありません。 kdj.com は、この記事で提供される情報に基づいて行われた投資に対して一切の責任を負いません。暗号通貨は変動性が高いため、十分な調査を行った上で慎重に投資することを強くお勧めします。

このウェブサイトで使用されているコンテンツが著作権を侵害していると思われる場合は、直ちに当社 (info@kdj.com) までご連絡ください。速やかに削除させていただきます。

2025年04月20日 に掲載されたその他の記事