Capitalisation boursière: $2.8161T -4.520%
Volume(24h): $124.1295B 7.040%
  • Capitalisation boursière: $2.8161T -4.520%
  • Volume(24h): $124.1295B 7.040%
  • Indice de peur et de cupidité:
  • Capitalisation boursière: $2.8161T -4.520%
Cryptos
Les sujets
Cryptospedia
Nouvelles
CryptosTopics
Vidéos
Top News
Cryptos
Les sujets
Cryptospedia
Nouvelles
CryptosTopics
Vidéos
bitcoin
bitcoin

$91950.782490 USD

5.02%

ethereum
ethereum

$2294.491836 USD

4.33%

xrp
xrp

$2.509390 USD

2.51%

tether
tether

$1.000095 USD

0.02%

bnb
bnb

$607.189640 USD

2.41%

solana
solana

$149.261380 USD

4.01%

usd-coin
usd-coin

$0.999917 USD

-0.03%

cardano
cardano

$0.944236 USD

0.60%

dogecoin
dogecoin

$0.214017 USD

7.05%

tron
tron

$0.245479 USD

1.44%

pi
pi

$1.907150 USD

0.33%

chainlink
chainlink

$17.337094 USD

13.85%

hedera
hedera

$0.248356 USD

-2.66%

stellar
stellar

$0.300477 USD

1.02%

unus-sed-leo
unus-sed-leo

$9.918046 USD

0.25%

Articles d’actualité sur les crypto-monnaies

GenMol: A Versatile AI Model Revolutionizing Computational Drug Discovery

Jan 14, 2025 at 10:02 pm

GenMol: A Versatile AI Model Revolutionizing Computational Drug Discovery

A new AI model called GenMol has been developed to revolutionize the field of computational drug discovery with its versatile approach to molecular generation. As highlighted in a recent report by NVIDIA, this innovative framework offers a transformative perspective on drug discovery tasks, streamlining the traditional, complex process.

Typically, conventional drug discovery models require extensive modifications to adapt to new tasks, demanding substantial time, computational resources, and specialized expertise. In contrast, GenMol introduces a generalist framework designed to handle a wide spectrum of drug discovery challenges using a chemically intuitive methodology. This framework enables dynamic exploration and optimization of molecular structures, aiming to simplify and expedite the drug discovery process.

Highlighting its versatility, GenMol builds upon and surpasses the capabilities of earlier models like SAFE-GPT, which utilized sequential attachment-based fragment embedding (SAFE) representation. While SAFE-GPT was a notable advancement in its own right, GenMol overcomes its limitations in both efficiency and scalability. By employing a discrete diffusion-based architecture and parallel decoding, GenMol enhances computational performance and adapts to a broader range of tasks, outperforming its predecessor in multiple drug discovery applications.

The representation of molecular structures is paramount to ensuring the accuracy and adaptability of computational models. Unlike traditional linear notations such as SMILES, GenMol leverages the SAFE representation, which deconstructs molecules into modular fragments. This approach facilitates intricate tasks such as scaffold decoration, motif extension, and the generation of complex molecular structures, providing a more intuitive and effective method for molecular design.

Crucial to GenMol's efficiency is its discrete diffusion framework, which enables parallel, non-autoregressive decoding with bidirectional attention to simultaneously process molecular fragments. These architectural innovations allow GenMol to achieve up to 35% faster sampling compared to SAFE-GPT, making it an ideal solution for industrial-scale drug discovery applications. Its enhanced efficiency and scalability reduce computational demands, particularly in large-scale or high-throughput projects.

In fragment-constrained molecule generation tasks, GenMol demonstrates superior performance to SAFE-GPT, achieving higher quality in scaffold decoration, motif extension, and superstructure generation. This performance showcases its capacity to deliver precise and high-quality molecular outputs across a diverse range of applications.

Overall, GenMol represents a pivotal advancement in AI-driven drug discovery by offering a versatile, efficient, and highly accurate tool for researchers to address diverse tasks without requiring task-specific adjustments. This marks a substantial leap forward in the field of molecular generation, where SAFE-GPT was previously the state-of-the-art model. While SAFE-GPT may still be preferred for certain specialized applications, GenMol's broader applicability and superior efficiency make it the optimal choice for many researchers in the field.

Clause de non-responsabilité:info@kdj.com

Les informations fournies ne constituent pas des conseils commerciaux. kdj.com n’assume aucune responsabilité pour les investissements effectués sur la base des informations fournies dans cet article. Les crypto-monnaies sont très volatiles et il est fortement recommandé d’investir avec prudence après une recherche approfondie!

Si vous pensez que le contenu utilisé sur ce site Web porte atteinte à vos droits d’auteur, veuillez nous contacter immédiatement (info@kdj.com) et nous le supprimerons dans les plus brefs délais.

Autres articles publiés sur Mar 07, 2025