Market Cap: $2.65T 0.480%
Volume(24h): $98.5374B -14.670%
  • Market Cap: $2.65T 0.480%
  • Volume(24h): $98.5374B -14.670%
  • Fear & Greed Index:
  • Market Cap: $2.65T 0.480%
Cryptos
Topics
Cryptospedia
News
CryptosTopics
Videos
Top News
Cryptos
Topics
Cryptospedia
News
CryptosTopics
Videos
bitcoin
bitcoin

$83571.608249 USD

-1.38%

ethereum
ethereum

$1826.028236 USD

-3.02%

tether
tether

$0.999839 USD

-0.01%

xrp
xrp

$2.053149 USD

-2.48%

bnb
bnb

$601.140115 USD

-0.44%

solana
solana

$120.357332 USD

-3.79%

usd-coin
usd-coin

$0.999833 USD

-0.02%

dogecoin
dogecoin

$0.166175 USD

-3.43%

cardano
cardano

$0.652521 USD

-3.00%

tron
tron

$0.236809 USD

-0.59%

toncoin
toncoin

$3.785339 USD

-5.02%

chainlink
chainlink

$13.253231 USD

-3.91%

unus-sed-leo
unus-sed-leo

$9.397427 USD

-0.19%

stellar
stellar

$0.266444 USD

-1.00%

sui
sui

$2.409007 USD

1.15%

Cryptocurrency News Articles

Reconfiguring Solid-State Lithium Batteries for Easy Recycling

Jul 16, 2024 at 11:13 pm

Rechargeable solid-state lithium batteries have the potential to power cell phones and laptops for days with a single charge. However, these batteries are not environmentally friendly as almost everything goes to waste during the current recycling process. Now, a study published in ACS Energy Letters, reveals a reconfigured design of solid-state lithium batteries that allows all components to be easily recycled.

Reconfiguring Solid-State Lithium Batteries for Easy Recycling

Solid-state lithium batteries have the potential to power cell phones and laptops for days on a single charge, but almost everything goes to waste during the current recycling process. Now, a study published in ACS Energy Letters reveals a reconfigured design of solid-state lithium batteries that allows all components to be easily recycled.

To separate the core battery components from other metal components in a coin cell battery, the researchers inserted two polymer layers at the interfaces between the electrode and the electrolyte prior to the start of the recycling process. After successful separation of the components, the team made a composite reconstructed battery with the recovered metals and electrode using cold sintering – the process of combining powder-based materials into dense forms at low temperatures through applied pressure using solvents. This process meant that they could not only recover and reuse the whole battery, but also recycle it again after its use – increasing the sustainability of rechargeable batteries.

Importantly, the researchers found that the reconstructed battery achieved between 92.5% and 93.8% of its original capacity. “While the commercialization of all-solid-state lithium batteries is still in its early stages, our work provides important insights and ideas for designing recyclable versions of these batteries,” explained first author Yi-Chen Lan of Penn State. “While we’re not quite there yet, the long-term goal is to apply this innovation to larger batteries that could be used in devices like cell phones and laptops, once all solid-state technology becomes more prevalent.”

Disclaimer:info@kdj.com

The information provided is not trading advice. kdj.com does not assume any responsibility for any investments made based on the information provided in this article. Cryptocurrencies are highly volatile and it is highly recommended that you invest with caution after thorough research!

If you believe that the content used on this website infringes your copyright, please contact us immediately (info@kdj.com) and we will delete it promptly.

Other articles published on Apr 04, 2025